
István Fehérvári

Matr.-Nr. 0861367

On Evolving Self-organizing Technical
Systems

DISSERTATION

zur Erlangung des akademischen Grades
Doktor der technischen Wissenschaften

Alpen-Adria-Universität Klagenfurt

Fakultät für Technische Wissenschaften

Begutachter:

Univ.-Prof. Dr.-Ing. Wilfried Elmenreich

Institut für Vernetzte und Eingebettete Systeme
Alpen-Adria-Universität Klagenfurt

Univ.-Prof. Dr. Ágoston E. Eiben

Department of Computer Science
Vrije Universiteit Amsterdam

November 2013





Declaration of honor

I hereby confirm on my honor that I personally prepared the pre-
sent academic work and carried out myself the activities directly
involved with it. I also confirm that I have used no resources other
than those declared. All formulations and concepts adopted literal-
ly or in their essential content from printed, unprinted or Internet
sources have been cited according to the rules for academic work
and identified by means of footnotes or other precise indications
of source.

The support provided during the work, including significant assi-
stance from my supervisor has been indicated in full.

The academic work has not been submitted to any other exami-
nation authority. The work is submitted in printed and electronic
form. I confirm that the content of the digital version is completely
identical to that of the printed version.

I am aware that a false declaration will have legal consequences.

(Signature) (Place, date)





On Evolving Self-organizing Technical
Systems

The trend toward pervasive computing and networked systems has lead
to increased complexity and dynamics of today’s technical systems. Thus,
future systems are expected to be even more complex requiring novel ways
to handle such complex networked systems. One approach to solve this
problem is to increase the level of self-organization in those systems. Self-
organizing systems offer numerous advantages over traditional ones like
robustness against a failure of a component and scalability but due to
the distributed structure there is no straightforward way to design a self-
organizing system.

This thesis investigates how evolutionary computation can be applied
to find the appropriate micro-level rules of a self-organizing system that
provide the desired emergent global behavior for a given system. In parti-
cular, we propose a design methodology built on meta-heuristic search that
guides the designer throughout the whole engineering process.

Additionally, we investigate the evolvability of self-organizing technical
systems via several case studies focusing on the effects of certain design
decisions explained in the proposed methodology. First, a self-organizing
cellular automata model is described that is evolved to present a desired 2D
structure. Using this example the connection between problem complexity
and evolvability is discussed.

Two further studies focus on evolutionary swarm robotics. In the first
one, we discuss the effects of various interaction interfaces and their effects
on the quality of the evolved solutions. We find that seemingly identical
interfaces can produce significantly different group behavior.

The second experiment investigates how a self-organizing team of soccer
robots can be evolved. Here, we study the effects of different agent controller
structures and interface interpretation models.

We also describe a novel evolutionary software framework that supports
the proposed design methodology and aids engineers and researchers wor-
king with self-organizing systems.

i



ii



Evolution von Selbstorganisierenden
Systemen

Der Trend bezüglich Pervasive Computing und vernetzter Systeme hat zur
erhöhten Komplexität und Dynamik heutiger technischer Systeme geführt.
Künftige Systeme werden voraussichtlich noch komplexer sein, was neue
Möglichkeiten erfordert, um solche komplexe vernetzte Systeme zu verar-
beiten. Ein möglicher Ansatz um dieses Problem zu lösen besteht in der
Erhöhung des Niveaus der Selbstorganisation in diesen Systemen. Selbst-
organisierende Systeme bieten zahlreiche Vorteile gegenüber traditionellen
Systemen wie Robustheit gegen den Ausfall einer Komponente und Ska-
lierbarkeit, aber aufgrund der verteilten Struktur gibt es keine einfache
Möglichkeit ein selbstorganisierendes System zu entwerfen.

Diese Arbeit untersucht wie evolutionäre Algorithmen angewendet wer-
den können, um die entsprechenden Mikro-Ebene Regeln eines selbstorga-
nisierendes Systemes zu finden, welche das gewünschte emergent globale
Verhalten bietet. Dazu wird eine Design-Methodik für meta-heuristische
Suche vorgeschlagen, welche den Designer durch den gesamten Engineering-
Prozess führt.

Mit Hilfe verschiedener Fallstudien werden die Auswirkungen bestimm-
ter Design-Entscheidungen auf die Entwicklungsfähigkeit von selbstorga-
nisierenden technischen Systemen untersucht. Zuerst wird ein Modell für
selbstorganisierende Zellularautomaten beschrieben, das entwickelt wird
um eine vorgegebene Struktur zu präsentieren. Mit diesem Beispiel wird
die Verbindung zwischen Problemkomplexität und Entwicklungsfähigkeit
diskutiert.

Zwei weitere Studien konzentrieren sich auf evolutionäre Schwarmrobo-
tik. In der ersten Studie diskutieren wir die Auswirkungen von verschie-
denen Interaktionsschnittstellen und ihre Auswirkungen auf die Qualität
der entwickelten Lösungen. Die Ergebnisse zeigen dass beinahe identische
Schnittstellen ein deutlich unterschiedliches Gruppenverhalten produzieren
können.

Das zweite Experiment untersucht, wie ein selbstorganisierendes Team
von Fußball-Roboter evolviert werden kann. Hier untersuchen wir die Ef-
fekte verschiedener Steuerungsstrukturen von Agenten und verschiedene
Interpretationsmodellen von Schnittstellen.

Schlussendlich beschreiben wir ein neues Software-Framework, das
die vorgeschlagene Entwurfsmethodik implementiert und Ingenieuren und
Forschern dabei helfen kann sich mit selbsorganisierenden Systemen zu
beschäftigen.

iii



iv



Acknowledgements

I would like to express the deepest appreciation to my main supervisor
Professor Wilfried Elmenreich, who has the attitude and the substance of a
genius: he continually and convincingly conveyed a spirit of adventure in regard
to research and scholarship, and an excitement in regard to teaching. Without
his guidance and persistent help this dissertation would not have been possible.
In addition, a thank you to Professor A. E. Eiben, who dedicated his time to
review this thesis. His work in the field had a significant influence on my
professional life.

I would also like to extend my thanks to Dr. Vito Trianni, whose fruit-
ful discussions and constructive criticism kept me on the right path. I am
grateful to him for holding me to a high research standard and enforcing strict
validations for each research result, and thus teaching me how to do research.

I am indebted to my many colleagues who helped me in fixing software
bugs, joined in for discussing ideas or proofreading my drafts.

Finally, I wish to thank my friends and loved ones, who have supported me
throughout the entire process, both by keeping me harmonious and helping me
putting the pieces together.



vi



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Self-organization 9

2.1 A Brief History of Self-organization . . . . . . . . . . . . . . . . 10

2.2 Self-organization in Networked Technical Systems . . . . . . . . 12

2.3 Approaches to Design Self-organizing Systems . . . . . . . . . . 14

3 Design by Evolution 17

3.1 Evolution in Engineering . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Evolutionary Techniques . . . . . . . . . . . . . . . . . . 20

3.1.2 Applying Evolution to Solve Problems . . . . . . . . . . 22

3.2 Evolving Self-organizing Systems . . . . . . . . . . . . . . . . . 23

3.2.1 Development or evolution? . . . . . . . . . . . . . . . . . 24

3.3 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Simulation Model . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Interaction Interface . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Evolvable Decision Unit . . . . . . . . . . . . . . . . . . 30

3.3.4 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . 32

3.3.5 Engineering the objective function . . . . . . . . . . . . . 33

4 FREVO: A Tool to Design SOS 37

4.1 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 FREVO Architecture . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Candidate Representation . . . . . . . . . . . . . . . . . 42

4.2.3 Optimization Method . . . . . . . . . . . . . . . . . . . . 43

vii



4.2.4 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 FREVO Example Problem . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Evolving Spatial Patterns 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Cellular Automaton Model . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Measuring Complexity . . . . . . . . . . . . . . . . . . . 57

5.3 Evolutionary Setup . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Fitness function . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Simple structures . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Complex structures . . . . . . . . . . . . . . . . . . . . . 63

5.4.3 Natural patterns . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Optimizing the Network Structure . . . . . . . . . . . . . . . . . 66

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Study on the Interaction Interface Design 69

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Evolving Flocking Behavior . . . . . . . . . . . . . . . . . . . . 72

6.2.1 LED configuration . . . . . . . . . . . . . . . . . . . . . 72

6.2.2 Sensory-motor System . . . . . . . . . . . . . . . . . . . 73

6.2.3 Genotype-to-phenotype mapping . . . . . . . . . . . . . 75

6.2.4 Evolutionary algorithm and fitness function . . . . . . . 75

6.3 Evaluating LED configuration . . . . . . . . . . . . . . . . . . . 77

6.3.1 Näıve configurations . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Left-right configurations . . . . . . . . . . . . . . . . . . 79

6.3.3 Front-rear configurations . . . . . . . . . . . . . . . . . . 81

6.3.4 Comparison between different configuration categories . . 83

6.4 Classification of solutions . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 SO Behavior in Adversarial Environment 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2.1 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . 92

7.2.2 Candidate Representations . . . . . . . . . . . . . . . . . 92

7.2.3 I/O interface between Simulation and Controllers . . . . 94

7.2.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . 95

7.2.5 Optimized Tournament Ranking . . . . . . . . . . . . . . 97

7.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Conclusions 103

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

List of Own Publications 127

ix



x



List of Figures

2.1 Pattern formation observed while simulating the Belousov-
Zhabotinsky reaction occurring in a Petri dish. . . . . . . . . . . 10

3.1 Basic flowchart of the evolutionary design . . . . . . . . . . . . 23

3.2 Proposed design methodology . . . . . . . . . . . . . . . . . . . 25

4.1 Overview of FREVO’s graphical interface while selecting a problem

component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 FREVO components: (problem, optimization Method (blue), repre-

sentation and ranking) . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Implementing a new problem class in FREVO. The user is required

to implement the objective function and a simple getter function that

returns the theoretically maximum value (if available) . . . . . . . . 41

4.4 FREVO’s components with class generalizations and dependencies 46

4.5 Fitness development vs. number of generations with different neural

networks. Optimization method: NNGA, obstacle percentage: 0%.

The Fully-meshed net clearly outperforms the Three-layered net in

every generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Fitness development vs. number of generations with different opti-

mization methods. Representation: Fully-meshed net, obstacle per-

centage: 15%. CEA2D outperforms NNGA in almost every generation. 49

4.7 Diversity development vs. number of generations, optimization

method: NNGA (left), CEA2D (right) representation: Fully-meshed

net, obstacle percentage: 15%. . . . . . . . . . . . . . . . . . . . . 50

4.8 FREVO in evaluation mode. Left: list of candidates, right: config-

urable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 UAV example project visualization with 5 drones and 15% obstacles.

Black cells are blocked, while grey ones are covered. The blue dots

indicate the position of the drones. . . . . . . . . . . . . . . . . . . 52

5.1 Interconnections of ANNs in neighboring cells . . . . . . . . . . 58

xi



5.2 CA steps for Austrian flag; best solution after 200 generations . 63

5.3 Evolution of recreating a Hungarian flag. Best solutions over
generations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Fitness versus complexity. Higher complexity results in typically
lower fitness values. . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Number of steps required for the best solution. Complexity of
the structure plays no apparent role. . . . . . . . . . . . . . . . 65

5.6 Attempt to reproduce the work of Leonardo da Vinci . . . . . . 65

5.7 Evolving a reproduction of animal skin patterns . . . . . . . . . 66

5.8 Comparison of best evolved solutions for the Mona Lisa problem
with different number of hidden neurons. . . . . . . . . . . . . . 67

6.1 LED arrangement on the robot’s body,as seen from top . . . . . 73

6.2 A possible initial setup of the 10 robots. . . . . . . . . . . . . . 76

6.3 Comparing naive configurations through empirical attainment
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Comparison between the uniform configuration (BBBBBBBBBBBB)
and a left-right configuration featuring an equivalent number of
LEDs on (BBBBBBRRRRRR) . . . . . . . . . . . . . . . . . . . . . 79

6.5 Comparison among left-right configurations with decreasing
number of LEDs. Setups with less LEDs perform better (see
text for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.6 Comparison among front-rear configurations (see text for details). 81

6.7 Comparison among front-rear configurations with decreasing
number of LEDs (see text for details). . . . . . . . . . . . . . . . 82

6.8 Comparison of the left-right and front-rear configurations (see
text for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.9 Comparison of the left-right and front-rear configurations with
decreasing number of LEDs (see text for details). . . . . . . . . 84

6.10 Classification of left-right (left) and front-rear (right) configura-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 A possible wiring of the neural network showing the groups of
inputs, outputs and hidden neurons. Connections with stronger
weight are indicated with bold lines while ones with lower weight
are colored with grey. . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 A group of input neurons detecting the ball . . . . . . . . . . . 95

7.3 Weighted fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



7.4 Total number of games in full tournament and Swiss System . . 98

7.5 Tournament results of ANN with different I/O interfaces . . . . 99

7.6 Box-and-whisker diagram of the repeated evaluation of different
I/O models and different number of hidden neurons for feedfor-
ward and fully connected ANNs . . . . . . . . . . . . . . . . . . 99

7.7 Tournament results of fully connected vs. feedforward ANN with
Cartesian interface . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.8 Box-and-whisker diagram of the repeated evaluation of fully con-
nected vs. feedforward ANN with Cartesian interface . . . . . . 101

xiii



xiv



List of Tables

4.1 Configurations used for the case study. . . . . . . . . . . . . . . 48

5.1 Parameters used for the evolutionary algorithm . . . . . . . . . 59

5.2 Reference images used for the experiments. . . . . . . . . . . . . 62

6.1 List of tested LED configurations . . . . . . . . . . . . . . . . . 74

6.2 Detailed classification results for each configuration. . . . . . . . 86

7.1 Parameters of the evolutionary algorithms . . . . . . . . . . . . 92

7.2 Parameters of the fitness function . . . . . . . . . . . . . . . . . 97

xv



xvi



CHAPTER

1
Introduction

Chaos was the law of nature; Order was the dream of man.

– Henry Adams, The Education of Henry Adams

Due to the technological advancement in the recent decades we see a huge
increment of pervasive, networked systems around us. This is explained by the
fact that computing devices are getting faster, smaller and cheaper, thus even in
our private life we are getting more and more surrounded with large collections
of these devices. This opens up many new application areas of such networked
intelligent autonomous machines. Imagine cars that warn each other of possible
traffic scenarios, autonomous flying robots that collaboratively survey an area,
or swimming robots that clear oil patches from the ocean’s surface. However,
with the increased complexity one has to face new design and reliability issues.
The challenge arises from the fact that these systems cannot be managed in
every little detail or to anticipate every possible configuration. Therefore, there
is a high desire for flexibility and self-adaptation in order for them to be able to
handle uncertain and dynamic environments while maintaining their planned
functionality.

Since nature provides probably the most complex systems, a new field called
organic computing [MS04] has risen recently with the vision of bringing these
natural processes into technical systems in order to tackle complexity issues.
One of the key concepts within this field is self-organization that allows a system
to maintain its structure and function via internal dynamic processes without
any external control. Moreover, it brings many new advantageous properties
to the table that traditional, centrally controlled systems do not offer, such as
robustness, scalability, and adaptability.

Despite of all these advantages, designing a self-organizing system is not
straightforward. The problem is that traditional top-down design approaches
fail to build systems with emergent functions since those are results of bottom-

1



1 Introduction

up processes. Practically, any pure top-down attempt is useless since one can-
not simply predict the effect of a change at the micro level on the macro level.

Though in the recent years systems with self-* properties have been thor-
oughly investigated, there were only a handful of proposals on the design and
engineering of self-organizing systems [Ger07, AWdM08, BS08]. The main issue
is that one cannot simply establish a set of internal rules for a given system that
leads to the desired emergent behavior. Furthermore, the highly dynamic char-
acteristics of these systems requires one to find the right set of rules, meaning it
provides a guaranteed stable operation even under unexpected circumstances.

One idea would be to obtain knowledge on natural self-organizing systems
and apply the acquired insights in the technical domain. For example, an
interesting emergent effect has been found while studying a special breed of
fireflies in South-East Asia. These insects are famous for synchronously emit-
ting light flashes to attract mating partners [Buc88]. This phenomenon inspired
the model of pulse-coupled oscillators where each unit exhibits an activation
state that increases over time and can influence neighbors only via short pulses.
This firing event occurs when the activation level reaches a certain threshold
after which it is set back to zero. Similarly, units observing this firing event
adjust their activation by a small amount. As a result almost always a common
state emerges in which every unit fires at the exact same point in time [MS90].
A useful application of this phenomena is distributed clock synchronization
in wireless, ad-hoc sensor networks [TAB07, WATP+05, LE09], however an
interesting application of this algorithm was also proposed by Christensen et
al. [COD09] to detect non-operational units in a multi-robot system. Another
very prominent example of a natural self-organization is the pheromone trail
laying behavior of ants that creates a stigmergic [MO08] relation among them.
Thus, via local interactions with the environment these insects are capable
of coordinating the whole population in order to map the shortest route be-
tween food sources and nests or to build amazing complex structures. This be-
havior inspired the well-known Ant Colony Optimization algorithm [DMC96],
network traffic routing [DCD98] and decentralized control of swarm robotic
systems [WKF+10].

As we can see, learning from nature can help finding appropriate templates
that can be used to design self-organizing system. However, the drawback of
this approach is that in many cases there exists simply no such suitable natural
pattern. Therefore, one is left with the option to manually tweak the micro-
level interactions of a system following some kind of trial-and-error process in
order to find the desired emergent behavior. Due to the inherent unpredictable
nature of self-organizing systems, this means that after each change the whole
system has to be tested and evaluated in simulation or in real hardware until
all the requirements are met. Now it is easy to imagine that at this level of

2



1 Introduction 1.1 Motivation

complexity a pure bottom-up search of all possible configurations is simply not
feasible, thus there is a need for more sophisticated search techniques.

Due to the development of available computational power in the last decade,
we can bring this idea one step forward by mimicking the same process that
created those natural systems: evolution. Its digital counterpart, evolutionary
computation has already been applied in many fields of science as a general tool
for numerical optimization. Indeed, evolutionary algorithms are considered to
be robust enough to be used in many application areas (especially where the
search space is large), however even with additional techniques they can get
stuck at sub-optimal results. These properties nominate evolution the second
best approach for any given problem [Gol89].

The idea of evolving simple rules to obtain complex emergent behavior
has been discussed first by Koza [Koz92] where he presents two examples of
evolving collective intelligence by means of genetic programming (GP). Since
this approach requires the user to define a limited set of mostly problem-specific
actions (e.g. move, climb), one would get the idea that the whole engineering
process boils down to a simple task of ”take a set of possible actions and let
it evolve”. However, in most cases it is not possible to simplify the micro-level
behavior to a set of simple distinct actions. Later on, many new examples of the
application of evolutionary computation came up mostly replacing the limited
genotype-to-phenotype mapping of GP to artificial neural networks or finite
state machines. For instance, in the field of swarm robotics it has been applied
to evolve autonomous controllers for simple robots [Tri08], or in the field of
cellular automata, where an edge detection algorithm was presented [BMA06].

However, related works indicate an overuse of empiricism while building
those experiments, meaning that many different choices of the experimental
setup are arbitrarily performed, without relying on a well-assessed methodol-
ogy. Fortunately, the robustness and flexibility of evolution sometimes coun-
terbalances ill-conceived setups, but this cannot be a priori guaranteed. This
all points towards the fact that the engineer has to face important design ques-
tions, which if not handled correctly, could lead to sub-optimal, or in some
cases, unusable outcomes at the cost of not only lost hours of human work, but
measurable computational time.

1.1 Motivation

In contrast with traditional top-down design approaches for distributed sys-
tems, evolutionary methods require very little a priori knowledge of the solu-
tion of a given problem. In particular, they relieve the designer from finding
both the local interaction rules of the components and the required internal

3



1.2 Approach 1 Introduction

mechanisms that drive the them towards this behavior. Therefore, they can
be extremely useful to synthesize self-organizing behaviors and to obtain the
desired emergent macro-level behavior. However, there is no free lunch: the
experimenter still has the burden of designing the setup of the evolutionary
experiment. While the design effort for the experiment is in principle simpler
than designing the solution itself, the lack of systematic methodologies may
keep the experimenter from optimally exploiting the evolutionary method or
might constrain the outcome to the intuition of the designer. Recently, in
the field of evolutionary swarm robotics, Trianni and Nolfi already recognized
the need for such an engineering methodology that guides the experimenter
through the relevant choices that must be made when setting up an evolution-
ary experiment [TN11].

The aim of this thesis is to follow this line of thought by extending their
work to provide a general design method for self-organized networked technical
systems. Thus, the ultimate goal is to provide a set of guidelines that can help
the engineer to make the right choices by enabling him to assess various critical
decisions in a meaningful way. In particular, we aim at:

• Performing a comprehensive analysis on the evolutionary design of self-
organizing systems in order to identify core methods, processes and in-
terfaces.

• Formulating a set of guidelines that can be used as basis for a design
architecture, along with useful examples.

• Reducing the design complexity by introducing a software tool that hides
many details of the evolutionary approach by decomposing it into smaller
parts. Thus, the designer can focus on the relevant part of the experiment.

• Assessing particular decision points in the previously formulated guide
within case studies in order to increase the understanding of the underly-
ing processes. Used cases will come from the two most prominent domains
of applied self-organization: cellular automata and swarm robotics.

1.2 Approach

Evolving parameters of various multi-agent systems is a very complex topic.
On top of that, if we are dealing with something that is so powerful, yet often
counter-intuitive, like self-organization, then we find ourselves facing a very
difficult task if want to use traditional mathematical analysis. Therefore, we
look at new design paradigms by learning from the many existing examples to

4



1 Introduction 1.2 Approach

obtain insights on how such systems behave when their micro-level interaction
rules are exposed to evolution. Since evolution is practically an automated
trial-and-error process, each candidate solution has to be evaluated, either in
simulation or on real hardware. Certainly, the latter approach would yield
better evolved solutions in terms of quality and accuracy, however it would
also increase the overall time and complexity required for each experiment,
especially the ones the require a higher number of robots to be programmed
and operated simultaneously. In order to provide a sufficiently high number of
evaluations with controllable and repeatable experiments with high flexibility,
this thesis follows the modeling and simulation approach.

In order to be able to conduct the necessary studies we are going to need an
appropriate set of tools. While there are many powerful software tools avail-
able that can help to model complex multi-agent systems, there are currently
no solutions out there which support direct studies on the evolution of self-
organizing systems. Consequently, we introduce a novel software framework
that provides the necessary abstractions and models in a modular way helping
our questing within this field.

Afterwards, we address each identified property within the proposed archi-
tecture using a systematic analysis of many simulation runs with increasingly
complex problems. We first introduce a case study based on a simple problem
in the domain of cellular automata. This example provides means to assess
the evolvability of a problem with respect to its complexity. We analyze the
evolvability of increasingly complex problems, and study the effects of different
neural network structures.

Afterwards, we continue the same idea but within the frame of swarm
robotics. Namely, we study the effect of the interaction interface that oper-
ates among the system’s components by comparing the performance of the
evolved teams on a bi-objective scale. Therefore, we extended this work with
an analysis of the pareto front of the evolved behavior to obtain an idea how a
clear comparison can be made.

The goal of our last case study is to see how the system’s evolvability is
changed within adversary environments. Thus, we turn towards today’s prob-
ably most popular collaborative robotics example: soccer. We also investigate
the effects of competing populations and propose an efficient way to evolve
them.

Each scenario is then followed by a discussion section with the aim of in-
creasing knowledge on the specific decision point within the previously proposed
evolutionary design architecture.

5



1.3 Outline 1 Introduction

1.3 Outline

The outline of this thesis is the following: after this short introduction, Chap-
ter 2 discusses the concept of self-organization, beginning with a short summary
of its history. A practical notion in the technical domain is given that will be
used for the rest of the thesis and an overview of related design approaches is
presented.

In Chapter 3 a system architecture for evolving self-organizing technical
systems is proposed as the core part of this thesis. Along the architecture, the
major cornerstones and decisions points that the designer has to face are drawn
along with examples, thus providing a practical set of guidelines. To illustrate
this three case studies are discussed in Chapters 5, 6 and 7 each revealing
important information about various design decisions.

Chapter 4 presents a software framework for evolving and evaluating self-
organizing systems (FREVO) that is built on top of the methodology discussed
earlier. The aim of this framework is to provide a tool for engineers and re-
searchers that helps to focus on specific aspects of evolving such systems remov-
ing the burden of being an expert in the field of other segments of evolutionary
computations. A simple example in the domain of self-organizing smart energy
grids is also shown.

The first case study is presented in Chapter 5 where the methodology is ap-
plied to design a complex self-organizing multicellular system based on Cellular
Automaton. The aim of this project is to give an intuitive idea of how evolv-
ing a self-organizing system towards a desired pattern or structure should take
place. Within this example, the complexity of the problem can be quantita-
tively assessed and thus the performance of various evolutionary strategies can
be easily compared using problems of increasing difficulty. The results show
that simple regular structures can be achieved relatively easy, but for complex
patterns additional search techniques are required.

In Chapter 6 we turn our attention towards evolutionary swarm robotics.
The presented project highlights the importance of the interaction interface of
the system’s components by studying the effect of different robot configura-
tions on the quality of the evolved solutions. In this domain, the choice of a
good configuration is crucial as even small parameter differences can lead to
completely different group behaviors. The system’s performance is evaluated
on a bi-objective scale that also demonstrates how such experiments can be
qualitatively evaluated. The results confirm that different configurations not
only have a strong impact on the performance, but they also correspond to
entirely different group behaviors.

The last case study in Chapter 7 focuses on the evolution of complex adap-
tive behaviors with a team of self-organizing soccer robots. The presented ex-

6



1 Introduction 1.3 Outline

periment demonstrates how such complex adaptive team behaviors can emerge
among components with very limited sensing capabilities. Furthermore, the
question of what complexity is required on the component level? is addressed
by comparing different decision unit models. This chapter also gives a brief
analysis and hints on how to efficiently co-evolve competing populations of
candidates.

Finally, the last chapter summarizes everything that is been done in this
thesis along with conclusive remarks and an outlook on what can be expected
from future research in this area.

7



1.3 Outline 1 Introduction

8



CHAPTER

2
Self-organization

It turns out that an eerie type of chaos can lurk just behind a facade
of order - and yet, deep inside the chaos lurks an even eerier type of
order.

– Douglas R. Hofstadter, Metamagical Themas: Questing For The Essence
Of Mind And Pattern

When in the early 1950’s a Russian scientist called Boris Belousov was
working on his personal project he came across something that he just could
not explain. His work at the time was focused on mimicking one part of the
process of glucose absorption in the body. In one of his experiments he mixed
various chemicals expecting to obtain a stable solution. Instead, the color of
the solution started to oscillate between colored and clear. At that time, this
reaction seemed to violate the known laws of physics, which even resulted in
a total rejection of all his publication attempts [Win84]. Unfortunately, these
events crushed him so hard that he eventually quit science.

While this example is most certainly not the only case when a great dis-
covery gets lost from those times, it demonstrates the lack of understanding
and acceptance of the idea that explains Belousov’s incredible results: self-
organization. In short, something is called self-organizing if it tends to become
more organized when left alone. This is indeed a rather counter-intuitive prop-
erty; in general, we expect things to become more messy or unorganized without
external intervention. Yet, as more and more examples came to light, the ex-
istence of a self-driving process of order out of disorder could not be denied
anymore.

9



2.1 A Brief History of Self-organization 2 Self-organization

Figure 2.1: Pattern formation observed while simulating the Belousov-
Zhabotinsky reaction occurring in a Petri dish. The actual calculations are
based on Turing’s equations [Tur52].

2.1 A Brief History of Self-organization

The idea that a system can become more organized only via internal processes
is not new at all. Probably one of the first documents that mentions it is by
René Descartes, in the fifth part of his Discourse on Method where he writes
the following [Des37, Part V]:

[Consider] what would happen in a new world, if God were now to
create somewhere in the imaginary spaces matter sufficient to com-
pose one, and were to agitate variously and confusedly the different
parts of this matter, so that there resulted a chaos as disordered as
the poets ever feigned, and after that did nothing more than lend his
ordinary concurrence to nature, and allow her to act in accordance
with the laws which he had established.

What he basically meant is that ordinary laws of nature tend to produce
organization and expresses it as something that God could have arranged to
have happen, if He hadn’t wanted to create everything Himself. Later on
Descartes elaborated the idea in much more detail in his book called Le Monde,
which he did not to publish in his life to avoid conflict with the Church[Gau04].

10



2 Self-organization 2.1 A Brief History of Self-organization

The actual term of “self-organization” was introduced much later by W.
Ross Ashby in 1947 [Ash47], while the first formal definition came by Farley
and Clark of the Lincoln Laboratory [FC54] in 1954 as a “system which changes
its basic structure as a function of its experience and environment”. Besides
the philosophical question of what ”self” is, the term inherently suffers from the
problem of defining what an organization of a system is. According to Ashby
it can be described as a functional dependence of a system’s future state on its
current state and any external inputs. Mathematically put, the organization of
a system is the function f : S × I → S where S is the state space and I is the
input state. His idea was that a system is self-organizing if it changes its own
organization without an external driving force. But how is this then possible?
Ashby’s answer was that it is not, since structure is invariant. Nevertheless,
it is possible then for one to find functions like g and h well approximating
f in two different regions. Now if the actual dynamics drive the system from
this first region to the second then one can observe an apparent change in the
organization from g to h, though it is a result of the same underlying dynamics.
This argument is elaborated in more details in [Ash62].

Later on, Foerster argued [vF60] that an organism cannot organize itself
independent of its environment, thus the environment of such systems is a
conditio sine qua non. As a consequence, in 1960 Ashby redefined the term as
a system that consists of the organism and its environment essentially binding
the two things together.

While Ashby’s definition of a self-organizing system provides a good basis,
there are certain problems with it. The main issue is that it does not give any
qualitative information on the changes that happen within the system. This
means that one cannot distinguish changes that lead to more organization from
ones that are either neutral or lead to less organization. Probably this missing
qualitative evaluation caused his definitions to remain mostly neglected by
following researchers.

Nevertheless, this gave rise to novel definitions and applications in many
different disciplines of science. In physics it was extensively applied from
the 1970s onwards to pattern formation and spontaneous symmetry break-
ing, in non-linear thermodynamics [NP77], and to explain cooperative phe-
nomena [Hak78]. For example, Eigen and Schuster et al. describe a set of
perquisites for a system in order to be able to self-organize [ES77]. In the
1980s when self-organization became an important part of the models and
techniques of the ”sciences of complexity” [Pag89], it quickly spread around
in nearly every field of science[TR02]. Indeed, we can find studies from
chemistry[Leh90], biology[CFS+01], mathematics and from the 90’s in the do-
main of socio-technical sciences as well [Kel96, Ves12].

11



2.2 Self-organization in Networked Technical Systems 2 Self-organization

Despite the vast amount of studies on self-organization across many fields,
a commonly-accepted interdisciplinary definition is still missing. This often
can lead to misinterpretations [Ort94]. An attempt to resolve this issue was
taken by Gershenson [GH03] claiming that self-organizing systems do not make
a separate class, but it is rather a way of observing systems. Nevertheless, we
can state that all definitions converge towards the following three observa-
tions [EdM08]:

• There is a continuous interplay of positive and negative feedback between
components.

• The structure and function of the system is an emergent property.

• There is no external directing influence.

In this work we will not attempt to propose yet another definition, but
rather to see how these observations can help us to apply self-organization in
the technical domain.

2.2 Self-organization in Networked Technical

Systems

Even though self-organization has already been known in many fields of science,
the idea to apply it in the technical domain has gained interest only recently.
The reason for this lies in the apparent paradigm shift from monolithic or
systems with a small number of components to large networked systems. This
paradigm shift can be explained by the technological advancement and the
appearance of pervasive information systems integrating into everyday objects
and activities. A typical example would be to replace a fieldbus network with
accurate but expensive sensors with one that contains a much larger number of
inexpensive sensors connected by a wireless ad-hoc connection. The advantage
of such a system is obviously the massively distributed view of the desired
target that leads to a more robust and accurate observation. However, such an
approach demands a paradigm shift on the control side as well to cope with
the increased complexity. Here comes the principle of self-organization into the
picture where both the control and the controlled system are decentralized.

At this point we have to come up with some kind of definition of what
a self-organizing technical system is. From the practical point of view, a self-
organizing system is fully defined by its components and their local interactions.
This means that there are no external driving forces, i.e. the global level func-
tion or behavior of the system is achieved via the components following a set of

12



2 Self-organization 2.2 Self-organization in Networked Technical Systems

rules based only on local information at any given time. While these conditions
might sound too restrictive, such systems are capable of exhibiting significantly
more complex behaviors than the simple sum of the individual actions. Thus,
we can say that a global behavior emerges from simple local interactions. For
a more rigorous mathematical model see Holzer et al. [HdMB08].

It is important to mention that although the emergent property of the
system is often seen as a clear indicator for self-organization, there is no
common agreement if its existence is a requirement for a system to be
called self-organized or is only a side-effect. Furthermore, Elmenreich and de
Meer [EdM08] argue that the emergent pattern should not be seen as a primary
property since in many self-organizing systems it is hidden from the observer.

Besides the capability to tackle complexity issues, self-organization offers
many advantages over traditional hierarchic or decentralized systems. Systems
built this way are inherently scalable, adaptive and robust against single-point
failures. Imagine a school of fish that has no leader, yet by each fish following
a simple set of rules we can observe a much larger entity coming alive. This
system is not only beneficial to scare away or avoid predators (adaptivity),
but can be composed of any number of fish (scalability) even if some of them
get caught or leave the school (robustness) [PB05]. Additionally, most emer-
gent behaviors can be achieved by using relatively simple components. For
example, to build a system that exhibits swarming behavior one requires units
having only a distance and a bearing sensor along with a reactive decision unit
that follows three simple rules [Rey87]. This means making a transition to
self-organization, we can probably reduce the cost of the hardware and the
complexity of the onboard software.

Typically, a design procedure of such systems would be to elaborate the
local, micro-level interactions that will result in the desired global behavior.
Unfortunately, there is no straightforward way for the design of these rules
yet so that the overall system will show the desired macro-level properties.
The problem lies in the fact that emergent behaviors are very hard, or even
impossible to predict or even to be boiled down into simpler interactions of
objects. Moreover, even experts have a strong tendency to falsely predict the
effect of a parameter change in a complex system (see for example the slime
mold behavior experiment described by Mitch Resnick [Res97]). Furthermore,
due to the high interplay and dependency among the components of the system,
a slight change of one parameter could cause unexpected and even counter-
intuitive results. Thus, finding a set of rules that causes the overall system to
exhibit the desired properties presents a great challenge to the system designers.

13



2.3 Approaches to Design Self-organizing Systems 2 Self-organization

2.3 Approaches to Design Self-organizing Sys-

tems

Traditional design methods are usually organized hierarchically and follow a
top-down approach. This means that one starts with a high level specification
and through many iterations and refinements arrives at a model that contains
the description of all the components and interactions of the system. However,
this approach conflicts with the emergent behavior of self-organizing systems
which is a result of bottom-up processes. Thus, there is a need for a different
kind of methodology that considers the unpredictable bottom-up micro-macro
direction in self-organizing systems.

Today, there exists no common formal methodology to find the appropri-
ate micro level rules that result in the desired macro level behavior, although
some steps have already been taken in this direction. Many proposed tech-
niques are from the field of multi-agent systems and agent-oriented software
engineering [GYWA05][GCGC08][SBP+09]. However, as explained above, a
formal design methodology must contain some kind of process that revisits and
iteratively refines the micro level behaviors in order to create a bridge between
local and global level behaviors [EB04].

One way to do this is to imitate and adopt an already working solution.
In the recent years many natural and artificial systems with emergent effects
have been studied. One of the most successful ways to reproduce such sys-
tems is to use agent-based simulations. A prominent example of this approach
was presented by Reynolds [Rey87] who simulated the swarming behavior of
birds. Each bird in his computational model followed the following three rules:
separation, cohesion and alignment. The first rule is basically a short-range
repulsion among the entities ensuring a collision free group, while the second
one drives the birds towards the average position of their neighbors (long range
attraction). These two rules represent the positive and negative feedback acting
within the system. Finally, the last rule guarantees a common group direction
by steering each bird towards the average heading of its neighbors.

Another very often used technique to model emergent behavior is cellular
automata (CA). CAs are spatially and temporally distributed discrete dynam-
ical systems composed of a lattice of simple elements (cells). Cells are only
dependent on their neighbors, thus their state can be fully described by the
states of the neighboring cells. During a simulation, each cell’s state is recom-
puted simultaneously, which gives rise to complex spatial and temporal pat-
terns [Sym08]. This model can be used for example to model self-organizing
traffic lights [GA05] or biological systems [EEK93]. In chapter5 we will also
present a study using cellular automata.

14



2 Self-organization 2.3 Approaches to Design Self-organizing Systems

Most work in this field however describes mechanisms, but does not give
answers as to how to apply those mechanisms to achieve an intended technical
effect. Yet, one can collect these experiences as a pool of design patterns in
order to adopt them to engineer the desired system. Such collections have
already been reported, for example by De Wolf and Holvoet et al. [WH07], or
by Sudeikat and Renz et al. [SR08].

In recent years, there have been several proposals for a general design
method for self-organizing systems. Gershenson et al. introduced the notion
of “friction” between two components as a utility to design the overall sys-
tem using trial and error [Ger07]. Besides being tedious, the problem with
such trial-and-error methods is that even if they are improved by certain no-
tions, they often suffer from counter-intuitive interrelationships between local
rules and emergent behavior. Another interesting approach was proposed by
Auer et al. [AWdM08], where the behavior of a hypothetical omniscient “per-
fect” agent is analyzed and mimicked in order to derive the local rules. An
example would be a poker player who can peek into the hands of the others
players. His strategy would then be used as a basis to derive a tactic that has
only the regular information available to a player. The problem here and in
all methods based on imitation is the limitation to cases where an appropriate
example model is available.

When designing large, parameter-heavy complex systems, manual trial-and-
error solutions are often not efficient or sometimes not feasible. In this case,
one can apply an automated process that systematically tests micro-level rules
driven by some evaluation function based on the desired global behavior. Since
the search space expands heavily with the number of possible local states and
interaction rules, a full search is simply not possible. One possible solution for
automated simulation-based search and design of self-organizing systems would
be to use evolutionary methods. The core advantage of such algorithms is that
they can be applied to any problem where the quality of a candidate solution
can be directly measured, thus there is no need for any internal knowledge
about the simulated system. Moreover, such algorithms are easily paralleliz-
able and can cope with the uncertainty of stochastic simulation models. There
are several examples of evolving the local rules of a self-organizing system. The
usefulness of evolutionary algorithms to evolve cooperative behavior is demon-
strated by Quinn et al. [QSMH02] by evolving teamwork strategies among a
set of robots. In the field of swarm robotics, Nelson describes the evolution
of cooperative systems with Artificial Neural Network controllers for a team
that plays “Capture the flag” against an opponent team of robots [NGH04].
Trianni presents several experiments where the controllers of a group of robots
were evolved to achieve a certain team behavior [Tri08]. The examples are not
limited to robotic applications; Arteconi [Art08] applies evolutionary meth-

15



2.3 Approaches to Design Self-organizing Systems 2 Self-organization

ods for designing self-organizing cooperation in peer-to-peer networks. In the
field of cellular automata, cell update rules were evolved to search for glider
guns [SB08].

As seen above, evolutionary methods can produce systems with emergent
properties via executing a huge combination of local rules within a simulated en-
vironment. The drawback of this approach is that it is hard, or even impossible
to model all possible influences that can act on the evolved system. Therefore,
the engineer has a hard time guaranteeing the behavior of the developed self-
organizing system. A possible solution could be to have the system search for
the local behavior during run time instead of during the design phase. Such
self-adaptive systems that can reason about their state and environment have
already been proposed by Cheng et al. [CLG+09] within the field of software
engineering. Their core mechanism for adaptation is the usage of feedback
loops that enables them to deal with unforeseen system states [BMSG+09].
An early architectural implementation of such a system was provided by IBM
Corporation [Cor04] which was mainly developed for monitoring and adapting
enterprise server applications.

Based on the idea above, a more general approach called the generic ob-
server/controller architecture has been proposed by Schöler and Richter et
al. [RMB+06][SMS05]. The idea here is to achieve a controlled self-organized
behavior by influencing the micro level rules of the system during run time.
This way, it is possible to handle such emergent states that have not been
considered during the design phase. This architecture consists of the following
three elements: the observer, the controller, and the system that is being ob-
served and controlled which is assumed to be composed of many components
with a high level of interdependent connections. The observer collects infor-
mation of specific attributes on the micro and macro level components of the
system. Based on this information and the expected behavior, the controller
steers the system in a more desired direction of operation. There exist sev-
eral applications of this model. For example, Prothmann et al. reports of an
organic traffic controller [PRT+08]; Tomforde et al. applies this model to self-
adapting networked systems within dynamics environments [TSHMS09]. The
disadvantage of online trial-and-error processes is that in order to be able to
assess different control decisions the system must be allowed to go into sub-
optimal, or even close to critical states. In a running system this behavior if
often not wanted.

16



CHAPTER

3
Design by Evolution

Man’s longing for perfection finds expression in the theory of opti-
mization. It studies how to describe and attain what is Best, once one
knows how to measure and alter what is Good and Bad.

– Charles S. Beightler, Foundations of optimization

Most of our artificial systems that show self-* properties are built on some
basis inspired by nature. Indeed, natural systems are inherently distributed and
self-organizing which makes them very appealing to be used in the technical
domain. Unfortunately, traditional top-down design approaches usually cannot
be followed to create a self-organizing system, since emergence is a bottom-up
phenomenon. A promising way would be to mimic the same process that
created many of those systems: evolution.

In the last decades, several optimization method have been designed based
on the principles proposed by Darwin in the 19th century[Dar59]. They com-
bine the idea of the survival of the fittest (natural selection) with a structured
yet randomized information exchange (natural genetics) to create a search al-
gorithm. Even though they contain a fair share of randomization, evolutionary
algorithms are not random walks. Instead, by retaining a pool of possible can-
didates they can exploit historical information to find new search points with
higher expected performance. A big advantage of such algorithms is that they
are universal, i.e. one does not need any a priori knowledge on the solution,
thus they can be applied to a very wide set of problems. On the other hand,
every evolutionary algorithm requires a function that can quantitatively assess
the performance of any candidate solution in order to find the best ones to
be used by the reproduction operators. A good introduction to evolutionary
computing has been given by Eiben and Smith in [ES03].

While algorithms inspired by evolution can be a promising way to design
self-organizing systems, they have several drawbacks as well. In many prob-
lem domains, especially with multi-modal fitness landscapes, such algorithms

17



3.1 Evolution in Engineering 3 Design by Evolution

tend to converge towards local optimum rather than the global optimum of the
problem. This means that the designer of the algorithm either has to fine-tune
the balance between exploitation and exploration (which is often unfeasible
with large multimodal search spaces), or to use additional techniques, for ex-
ample, using different fitness functions, on-the-fly adaptation of the rate of
the reproduction operators, or by maintaining a high diversity in the popula-
tion. Considering the many design parameters a self-organizing system already
has, an engineer can easily find him or herself facing the problem of building
the right experimental setup instead of designing the solution itself. While in
theory this effort is smaller, without a systematic methodology, one might be
restrained to fully exploit the benefits of the evolutionary approach, or obtain
sub-optimal solutions constrained by the intuition of the experimenter.

In this chapter, we review how Darwinian principles can be applied to design
self-organizing technical systems. In particular, we investigate how and why is
it different from the traditional evolutionary design of systems. We start by
reviewing how artificial evolution can be used to find the optimum solution for
a given problem. Here we reveal the basic advantages and disadvantages along
with the related techniques in the field. Then we move onto the domain of self-
organization, we carefully analyze each decision/design step an engineer has
to face when aiming for an evolutionary approach. In the respective sections,
we also indicate techniques and methods that possibly help one to mitigate
design errors, thus providing a more reliable methodology. Parts of this chapter
have been published and presented at the 7th International Workshop on Self-
organizing Systems [FE13].

3.1 Evolution in Engineering

Evolution described initially by Darwin is based on the following three ba-
sic principles: heredity, variation, and selection. In nature these simple rules
ensure the adaptation of living organisms to their environment in order to pre-
serve their species. Inspired by the elegant yet effective characteristic of this
process, John Holland transferred this knowledge to the field of search and op-
timization [Hol75]. He described the Genetic Algorithm (GA) that operates on
a (mostly fixed sized) population of candidate solutions and applies the prin-
ciples of evolution in order to gradually improve them and ultimately reach a
given goal.

In essence, heredity means that every new individual is similar to at least
one of the old ones. This is typically achieved through the offspring inherit-
ing genetic information from its parent(s). Variation implies that the process
of inheritance is not perfect, i.e., the offspring is not going to be completely

18



3 Design by Evolution 3.1 Evolution in Engineering

identical to its parents, but some of its genetic material will be intentionally
changed during the process. In order to keep the size of the population stable, a
control mechanism must be implemented that defines the direction of evolution
by selecting which individuals can survive to the next generation and which are
removed from the population. Without such an operator the population would
still change over time, however it would eventually just randomly drift. In the
natural world selection is happening in the form of natural differential survival
and mating capacities of entities of various species, while in artificial evolution
it is replaced by the objective (fitness) function which reflects the desired goal
from the system under evolution.

During an evolutionary run new generations are created by randomly mutat-
ing single genes or by recombining the genes of two or more individuals. Under
proper selection the algorithm efficiently explores the solution space looking
for better solutions. This space can be visualized as a multi-dimensional land-
scape where neighboring points represent similar genotypes and their heights
correspond to their fitness. Such a way, distinct hills and valleys can be con-
sidered as local maximums/minimums whereas the extremes are indicated as
the global maximum/minimum. Therefore, we can consider evolutionary algo-
rithms as search techniques that try to find the highest/lowest peak within this
landscape.

In the field of optimization, evolutionary algorithms fall into the cate-
gory of meta-heuristic search, thus they are always characterized by their
balance between intensification and diversification, or exploitation and explo-
ration [Yan08]. Exploration means to generate diverse solutions in order to
provide a good overall ”coverage” of the fitness landscape. Exploitation on the
other hand means the effort of searching for a better solution in a local con-
text provided by an already found good solution. While selection of the best
ensures a monotone convergence towards better solutions, diversification with
randomization helps to avoid being trapped at local optima and at the same
time it increases the diversity in the population. Therefore, a healthy balance
of these two components results into a convergence towards the global optima.

Unfortunately, evolutionary algorithms are prone to get stuck at sub-
optimal solutions when applied for complex problems. Even though increasing
the mutation rate and/or the population size could improve the exploration of
the algorithm and prevent getting stuck at a local optima, it would do so for
the price of reduced exploitation of good solutions. A well-known approach
to overcome this issue is to use some method that can maintain a sufficiently
high diversity within the population. For example, fitness sharing [GR87] is
a niching method that adjusts the fitness of individuals based on some dis-
tance metric defined on the genotype level. Typically, it lowers the fitness of
candidates that are similar to each other which spreads the population out

19



3.1 Evolution in Engineering 3 Design by Evolution

over multiple niches in the landscape; thus preserves a higher diversity. A
similar approach is clearing [Pet96] which, instead of degrading the fitness of
similar individuals, removes the least-fit candidates within a similarity radius
from the population. An approach called deterministic crowding was intro-
duced by Mahfoud et al., which changes the crossover operation in a way that
every offspring that is fitter than its parents will replace the parent that is
more similar to the offspring [Mah95]. In fact it resembles to fitness sharing,
however there is no requirement to define the similarity radius. Spatially struc-
tured evolutionary algorithms are also applied to keep a constant high diversity
within the population. Here every individual is constrained to a limited set of
other candidates it can mate with, thus the population is structured into a
number of demes. Probably, the most popular version of this approach is an
n-dimensional grid-like structure that ultimately defines the neighborhood re-
lations of every individual. For an in-depth summary of diversity maintaining
methods see [Dic05, Mah95].

3.1.1 Evolutionary Techniques

Practically, any system that conforms to the requirements of heredity, variation
and selection will result in evolution. Therefore, several variants of EAs have
been developed in the recent decades. Differences exist mostly on the genotype
to phenotype mapping level i.e., how the candidate solutions are represented
during evolution. The following (certainly not exhaustive) list presents the
most popular techniques:

Genetic Algorithm (GA): In this type of EA, solutions are formed as
strings of numbers. Originally binary numbers were used but it has been
shown that representations that reflect something about the problem gen-
erally perform better, such as real-valued numbers [JM91]. Genetic algo-
rithms are often used in numerical optimization problems.

Genetic Programming (GP): Unlike in GAs, solutions are encoded as in-
dividual computer programs that are evaluated based on their ability
to solve the given problem. Since source code of typical programming
languages cannot be easily changed in a way that they remain syntacti-
cally correct, candidates are represented in a tree structure, where every
node has an operator function and every terminal node has an operand.
This structure enables mathematical expressions to be represented in an
evolvable way.

Evolutionary Programming (EP): Very similar to GP, however the struc-
ture of the candidates is fixed and only the numerical parameters are

20



3 Design by Evolution 3.1 Evolution in Engineering

being evolved. It has been originally introduced by Lawrence J. Fogel to
evolve finite state machines [FOW66].

Gene expression programming (GEP): Similar to GP, however GEP also
explores the genotype-phenotype system, where the solutions are encoded
in fixed-length linear chromosomes leaving the interpretation of the genes
to evolution.

Evolution strategy (ES): This technique uses variable-sized vectors of real
values as genotypes and applies self-adaptive evolutionary operators (e.g
mutation)[Rec94].

Memetic algorithm (MA): MAs are hybrid techniques that are viewed as
a population based global search coupled with individual learning pro-
cedures capable of performing local refinements. At the time MAs are
subject to intense research to obtain knowledge on finding the balance
between exploration and exploitation, i.e., how to efficiently combine in-
dividual learning with population based strategies.

Differential evolution (DE): Introduced by Storn and Price [SP97], DE is
used to find the optimum of multidimensional real-valued functions. It is
operating on vectors of real values, but unlike ES, it is applying simple
operators based on vector differences.

Neuroevolution (NE): Similar to GP, but the genomes are interpreted as
artificial neural networks by describing their connection weights and/or
their structure. Encoding can be direct or indirect. Direct encoding
means that every neuron and connection is specified directly and explic-
itly in the genotype, while indirect encoding encapsulates a ”plan” which
is used to generate the network.

There are also several bio-inspired meta-heuristic search techniques that are
considered to be related, yet they are not classified as evolutionary. Examples
are particle swarm optimization that is based on the ideas of animal flocking
behavior [KE95], or cuckoo search [YD09], which was inspired by the brooding
parasitism of the cuckoo species. These approaches are similar to artificial
evolution since they use an iterative search over a population of candidate
solutions, however their way of exploration and exploitation is based on other
principles. Nevertheless, these techniques have been proved to be effective in
many combinatorial optimization problems, but will not be discussed within
this thesis.

21



3.1 Evolution in Engineering 3 Design by Evolution

3.1.2 Applying Evolution to Solve Problems

Although the concept of evolutionary design is fairly simple, when it comes to
application, it starts to become increasingly complex. In general, the whole
engineering process can be decomposed into three major steps: modeling the
system; an iterative search that explores new solutions; and a final validation
phase (see Figure 3.1). The core element of this workflow is to find a suitable
algorithm that leads the designer towards the optimal solution.

In the field of evolutionary computation, the ”heart” of every experiment is
how one represents a candidate solution in an evolvable way. Let it be a string
of bits, a vector of real values, or a tree structure, the genotype-to-phenotype
mapping ultimately has a huge impact on the complexity of the search algo-
rithm (i.e., number of parameters, possible reproduction operators), thus on
the outcome of the experiment. A bad choice of representation might intro-
duce unnecessary parameter-tuning from the experimenter, or create a too large
search space for the evolutionary algorithm. While the general rule of thumb
is to aim for the simplest possible representation to reduce the search space,
the designer has to decide what assumptions can be inserted into the system
and what are left to be found out by evolution. This problem is primarily
present when one has to design how the component under evolution is going to
be interfaced with another system, or environment. For example in evolution-
ary robotics, when designing the genotype-to-phenotype mapping for a robot
controller sensor inputs are usually pre-processed (e.g., extracting information
from the camera, or fusing sensor data) in order to reduce the complexity of
the optimization problem. This step ensures that the search process will not
be busy with solving an unrelated problem.

As discussed earlier, every meta-heuristic algorithm is a combination of
exploration and exploitation. However, according to the no free lunch theo-
rem[WM97], there is hardly any single algorithm that is the best for every
problem domain. Unfortunately, there is no simple method that tells what the
right balance is between exploration and exploitation. Typically, one relies on
previous experiences or applies a more tedious trial-and-error process to reach
an acceptable deal. Another approach is to map and analyze the fitness land-
scape in order to obtain knowledge on the number and possible location of
local and global minima. This is however not always feasible, especially if the
search space is too large, and/or has a high dimensionality. Fortunately, the
robustness of the evolutionary approach does not always require one to find the
optimal parameters of the algorithm; in most cases a trade-off would lead only
to increased computation time, and not necessarily worse results.

Obtaining the best results after the first run happens quite rarely. The
usual approach when using stochastic based search is to repeat the process

22



3 Design by Evolution 3.2 Evolving Self-organizing Systems

Figure 3.1: Basic flowchart of the evolutionary design

several times to reduce the noise of this technique. This step might also reveal
deficiencies introduced by wrong parameters of the algorithm (e.g. too high/low
population size, mutation rates), which can be easily corrected. Furthermore,
one can obtain knowledge on the possible shape of the fitness landscape and
could apply advanced techniques if the algorithm seems to be stuck at a sub-
optimal solution.

3.2 Evolving Self-organizing Systems

As discussed in Chapter 2, designing self-organizing systems is a challenging
task. This is mostly due to the fact that the emergent behavior is a result
of a dynamic bottom-up process that cannot be tackled with tradition top-
down design approaches. On top of that, such systems can be very sensitive
to parameter changes i.e., a small tweak in the system might have completely
unexpected results. A viable approach would be to exploit the robustness and
flexibility of artificial evolution in order to engineer self-organizing technical
systems.

In theory, when going for the evolutionary design, the same approach as for
traditional systems can be used. However, the counter-intuitive nature of many
self-organizing systems [Res97] makes the experimental setup of the evolution-
ary run a critical point in design. In other words, instead of finding the optimal
local rules for the desired emergent behavior, one has to find the optimal setup
of a method that will eventually find these rules. This shift of focus might
seem superfluous or redundant; however the design effort for the experiment is
in principle simpler than designing the solution itself. Unfortunately, the lack
of systematic methodologies may prevent the designer from optimally exploit-
ing the evolutionary method or might constrain the outcome to the intuition
of the designer.

From an engineering point of view, establishing the right models for evolu-
tion has the upmost priority, where crucial decisions have to be made in order
to obtain useful results. Among many things this includes selecting the right

23



3.2 Evolving Self-organizing Systems 3 Design by Evolution

computation model, the way of interactions and the whole evolutionary model
(genotype to phenotype mapping, search algorithm, etc.). The next step is to
let the whole system run on its own, thus gradually developing a viable solution
with no or very little user interaction. The last phase for any design process is
to verify the obtained results. Usually, this means a set of white or black box
testing, but in the case of complex networked systems, novel approaches are
necessary. Fortunately, there is a lot of ongoing research on how to evaluate
such systems [RPS12].

The first idea to establish a set of guidelines for designers has been proposed
by Trianni and Nolfi in the field of evolutionary swarm robotics [TN11]. They
define four major categories where the most important decisions take place:
the ecology, the sensory-motor system, the genotype-to-phenotype mapping,
and the fitness function. Ecology refers to the environment in which the robots
are evolved, which introduces ecological selective pressure. The sensory-motor
system means the choices the engineer has to make in order to separate fixed
and evolvable parameters of the robots. The representations of the evolved
features are decided in the frames of the genotype-to-phenotype mapping, while
the design of the fitness function is responsible for evaluating single solutions.
Though their categorization works very well in the domain of swarm robotics,
it might be unclear how this can be generalized to arbitrary self-organizing
technical systems. Furthermore, they do not discuss the effects of particular
design questions nor provide any hints on how one can systematically asses such
problems. Thus, our aim in the following is to extend their idea and describe
a more generic design methodology that works for any self-organizing system.

3.2.1 Development or evolution?

Self-organizing systems are considered to be inherently dynamic, since their
properties on the global level will arise due to the dynamic interactions on the
local level. As expressed by Holzer, de Meer, and Bettstetter [HdMB08], the
level of emergence of a system is highly dependent on the actual time. In most
literature, these continuous phase transitions are often noted as the evolution of
the system. Though it is correct, in the scope of this paper we are dealing with
the evolution of a system design instead of the evolution of the system during
operation i.e., the evolution of the local rules. Therefore, to avoid confusion we
recommend to call the former phenomena as development, that is a different
process to evolution. Chapter 5 will describe a study presenting an easy to
access example of this idea.

24



3 Design by Evolution 3.3 Design Methodology

Figure 3.2: Proposed design methodology

3.3 Design Methodology

We propose a design methodology that covers the most important decision
points the experimenter has to face. As can be seen in Figure 3.2, we distinguish
5 major components originally rooting from the task description [FE13]:

Task description: Set of requirements that the solution has to meet.
Simulation setup: Describes the simulation model and the relations between

the system’s components and their environment.
Evolvable decision unit: The evolvable representation of the local rules.
Interaction interface: Describes how the decision unit interacts with its en-

vironment.
Search algorithm: A meta-heuristic algorithm responsible of finding novel

and better solutions.
Objective function: The cost function that guides the search algorithm.

Typically, every engineering problem starts with a task description that
properly identifies the objectives and constraints in detail. In other words,
this can be seen as a contract that describes the expectations of the desired
system on a high abstraction level. Consequently, the task description has a
high influence on the applied simulation model and naturally on the objective
function.

The next step is then to specify a system model based on the task description
that is not only efficient, but accurately represents the important aspects of the
system to be modeled while abstracting unnecessary factors. However, this step
should not include how the components are represented or the way they interact
with each other, since this would anticipate several further important decisions.
For this purpose we separate them into an interaction interface unit and to an

25



3.3 Design Methodology 3 Design by Evolution

evolvable decision unit. In the former, one should plan the way the components
of the system can interact with each other and their environment, thus defining
the communication possibilities (i.e. sensors) and their underlying interfaces
(i.e. protocols).

The latter is focused on the actual representation of the components of the
system. This might include one or more types of models depending on the ho-
mogeneity of the system. The reason why this part is separated from the system
model is that the evolutionary method requires evolvable representations. This
means that the components have to be able to generate adaptive genetic di-
versity, for example by defining mutation or crossover operators [Alt94]. While
there are a good number of such representation, their often very different prop-
erties require a careful choice from the designer.

In order for the evolutionary process to be operational there must be a
valid and efficient search algorithm that iteratively optimizes the candidate
solutions. Though in theory, the search algorithm and the component repre-
sentation can be modeled independently, certain representations might require
special techniques from the optimization side in order to work optimally. For
example, evolving neural network structures often requires some mechanism
that prevents premature innovations to die out to soon [SM02]. Therefore, the
designer has to find the search algorithm that is possible the most efficient with
the chosen component representation. Furthermore, as explained earlier in this
chapter choosing the right set of parameters of the algorithm has a significant
overall effect on the convergence speed and on the quality of the results.

The last aspect is the design of an objective function that will guide the
evolutionary process through the problem environment to an optimal solution.
Since the effectiveness of this function is directly related to the effectiveness
of the evolutionary approach, a good objective function has a key role in the
process. The design of such an effective function is often difficult, even for
experts of the domain [JB05]. Even though there are attempts at creating
guides for non-experts based on taxonomy [WT11], unfortunately, there exist
no general guidelines available as to how to make a good function. Within
Section 3.3.5 we try address this issue by reviewing what factors are important,
especially in the self-organization domain.

3.3.1 Simulation Model

Foerster argued [vF60], that an organism cannot organize itself independently
of its environment, modeling the environment of SO systems is a conditio sine
qua non. Therefore, not only good component models are important, but there
is an equal emphasis on the definition of the system’s environment as well. As

26



3 Design by Evolution 3.3 Design Methodology

will be explained in Section 3.3.5, this has a great impact on the quality of the
objective function.

A further question when modeling a self-organizing system is homogene-
ity. While it might be a matter of choice, it is typically determined by the task
description. From the evolutionary perspective, a system composed of homoge-
neous components usually requires a smaller set of parameters to be optimized
(smaller genotype, simpler interfaces), thus reducing the search space. On the
other hand, heterogeneous systems can potentially offer more sophisticated be-
haviors that might be required for specific tasks to be solved, such as artificial
predator-prey societies [FK10a]. In this case, all roles must be somehow en-
coded into the genotype. Probably the simplest solution is to define all roles
a priori and encode all parameters in a single genotype. Note, that such ap-
proach would greatly increase the search space for the evolutionary algorithm.
A possible approach that prevents this problem to obtain heterogeneous teams
is to use parallel populations dedicated for different roles. This way the system
under evaluation is formed by drawing from these populations with a certain
strategy and the best candidate of each population composes the best solution
for the problem. Additionally, heterogeneity can be extended to the morpho-
logical level, where not only the behavior of a component is being evolved, but
its representation in its environment as well [BBZ05] in order to enable a higher
level of adaptivity.

From a practical point of view the type of computational model is a gen-
eral modeling question, since it defines the depth of the simulation and/or its
complexity and possible required computational resources. A viable modeling
approach is to use cellular automata (CA). The concept, originally discovered
in the 1940s at Los Alamos National Laboratory received much attention with
the release of Conway’s Game of Life [Gar70]. CA have been widely used in
physics, biology, social sciences, mathematics and computer science, since they
are very efficient in modeling dynamic spatial phenomena. Essentially, they
model cells on a grid that change their states according to their previous own
and neighboring cells’ states, thus it can model any universe, where space can
be represented as a uniform grid. The local rules are computed when each cell’s
state is being updated and the time advances in discrete steps.

For more complex situations, where these limitations are not enough, the
dominant approach is currently agent-based modeling (also called multi-agent
systems). As with CA, there are certain rules that describe the possible in-
teractions within the system; however an agent is generally defined as an au-
tonomous, intelligent entity that may interact with other similar entities or its
environment. The main benefit of using agent-based modeling is the agents
tend to capture reality more effectively, since they offer a higher freedom of
representing dynamic events, without assumptions such as monotonicity. Fur-

27



3.3 Design Methodology 3 Design by Evolution

thermore, they can easily model numerous noise, behavior and effect models to
fit the designer’s needs. As a rule of thumb for greater efficiency, event-based
simulations should be preferred over discrete time ones if the events happen
less regular.

3.3.2 Interaction Interface

The interaction interface describes how the decision unit interacts with the en-
vironment. This primarily involves the selection of type and number of sensors
and actuators and also their placement and the representation of transducer
data to the decision unit. The problem of defining an appropriate interaction
interface that allows a decision unit to interact with the environment in an
abstract way is typical for multi-sensor embedded systems [Elm07].

Designing an appropriate sensor system is constrained by the available sen-
sors, their energy consumption, coverage of sensor area, sensor accuracy, the
available communication bandwidth and finally their financial cost. Imagine
a mobile robot that should navigate autonomously. The task could be solved
by having a single expensive camera, two more cost-efficient cameras, or by in-
stalling multiple ultrasonic distance sensors. The two-camera solution might be
the one that delivers the most information about the robot’s environment, but
this solution will come with the highest bandwidth and energy requirements.
The ultrasonic sensors deliver less information, but work independently of light-
ing conditions. Furthermore, they have the highest cabling effort. While these
are known tradeoffs in the design of sensor systems, in the context of designing
self-organizing systems using an evolutionary approach, the question ”Which
sensor systems offers the best configuration to solve the problem?” translates to
”Which sensor systems offers the best configuration for which a solution of the
problem can be evolved?”. While we cannot answer this question analytically,
previous experiments have shown that the performance of an evolutionary al-
gorithm is affected by the interface. In contrast to interface complexity as
perceived by humans, an evolved system differs in some notable aspects. The
evolutionary approach is in general agnostic to non-conventional implementa-
tions of the sensor interface. This mostly applies to switching inputs or chang-
ing sensor ranges. Certain models like artificial neural networks can also cope
with different scales or non-linear measurements as well. Some tasks appear to
be simple for a human, because the task relates to abilities provided by human
legacy. A prominent example are all kinds of image processing tasks which
can often be done by humans in an intuitive simple way, while the necessary
functions are hard to provide by a computer system. Thus, a sensor system
featuring several independent simple sensors is expected to provide a better
basis for evolving an appropriate decision unit than a complex image sensor. It

28



3 Design by Evolution 3.3 Design Methodology

is, however, feasible to reduce complexity by applying smart cameras [RW08]
that preprocess and reduce the information to an amount that is feasible for
being processed by an evolved decision unit.

Apart from the hardware sensor configuration, the representation of data
also plays a role for the feasibility in an evolved system. Experiments with self-
organized soccer robots have shown that the same sensor configuration yields
different performance for different representations of the same data [FE10]
Chapter 7 will discuss this issue in more detail. A similar issue exists on
the actuator side. For a given set of actuators the way how these are interfaced
influences the quality of the solution that can be evolved.

Unfortunately, there exists no single algorithm for planning sensors and
actuators for a system so that it can be evolved well for a given purpose.
However, we identified the following principles to guide the system design:

Feasibility: Ensure that the problem can be solved given the available combi-
nation of sensors and actuators and their respective interfaces. A system
that is missing an essential sensor input or a necessary degree of freedom
would never evolve to a solution. For example, studies show that swarm
behavior requires the individuals to be able to infer on the relative head-
ing of other members of the group [Rey87]. This criterion is necessary,
but not sufficient.

Simplicity: Avoid overly complex interfaces. This on the one hand means
reduction by avoiding unnecessary sensors or actuators and on the other
hand avoids interfaces that can change their meaning based on some
implicit or explicit system state. For example, in a Cartesian coordinate
system relative to the actor a positive value on one axis always refers to a
point ahead of the robot’s direction of movement. In contrast, in a polar
coordinate system, the meaning of a coordinate depends on the value of
the other one, which makes it more complex for particular tasks.

Continuity: Evolutionary algorithms apply hill climbing algorithms using
small steps in a high-dimensional fitness landscape. Therefore, if two val-
ues in the sensor/actuator interface are close to each other, this should
indicate that the respective physical values are also close. In other words,
it is preferred that the sensors values satisfy the Lipschitz condition [SS01]
for better evolvability. This is a soft requirement, but in general interface
systems with continuous behavior (at least around the working point)
tend to evolve faster.

29



3.3 Design Methodology 3 Design by Evolution

3.3.3 Evolvable Decision Unit

As described earlier in Section 3.1, the main idea in evolutionary design is to
find the right set of local rules that drive the system towards the desired global
behavior. Essentially, these rules form the logic, of the “brain” or controller
of the individual components within the system. While it might seem that
these components have to be intelligent alone, this is nonessential. Imagine a
complex living being (e.g. a human), that is the result of the emergent behavior
of a very large number of non-intelligent cells. The idea is to encapsulate the
necessary actions and responses of a unit into something, so it will result in a
fine interplay of positive and negative feedback in the self-organizing system.
Therefore, in order to apply any iterative optimization method on them, they
must support some kind of genetic operators, such as mutation or reproduction,
in other words they have to be evolvable.

In the past decades many suitable representation models have been pro-
posed, but here we will discuss only the most frequently used ones. Before that,
the following list will enumerate the most important properties that should be
taken into account when selecting the right decision unit model.

Search space: The smaller, the better. It is tempting to reject a simple model
in the mistaken belief that the solution lies in greater complexity. Re-
member that most self-organizing systems are composed of components
following relatively simple rules and that evolutionary methods perform
way better on smaller search spaces.

State: Ensure that the problem can be solved with the amount of memory
provided by the decision unit model. In most cases, the ability to involve
previous states of the system into the decision making is not only benefi-
cial but already required. The idea is that the component becomes more
aware of the ongoing dynamical processes in the system. On the other
hand, involving too much memory would mean unnecessarily complex
representations, thus larger search space.

White/Black box models: Currently there is no solid theory on how to eval-
uate self-organizing systems, or even to ensure that their behavior will
always be within controlled limits. Therefore, an obvious step would be
to reduce the obfuscation and prefer white box models over black box
ones. Unfortunately, practice shows that general evolvability of a model
is inversely proportional of its understandability.

In the field of optimization and artificial intelligence many models have
already been proposed that at least partially fit the aforementioned criteria.

30



3 Design by Evolution 3.3 Design Methodology

One of the simple models is decision trees, that are tree-like graphs of deci-
sion points and their possible consequences. They also include chance events,
resource costs, and utility in order to provide a full representation of an algo-
rithm. There have been many successful implementations of evolving decision
trees from data mining [FaHY04] to robot control [Gre12] using different op-
timization algorithms[BK11][PK00]. The advantage of using decision trees is
their relatively simple white-box model, which provides easy access to the re-
sultant behavior being useful for later evaluation. On the other hand, it also
forces the designer to predefine all possible outcomes of a decision, thus the
outcome is bounded by the designer’s knowledge of the target system. Fur-
thermore, they posses very limited, if any, internal states, which is important
to solve certain tasks [Pet02].

Another approach is to use finite state machines (FSMs), that are, broadly
speaking, simple machines being in one (and only one) of a finite number of
previously defined states. They can change from one state to another as a
result of a triggering effect called transition. Their biggest advantage over other
representations is their white box model, which can be described by a regular
grammar. Although simple FSMs have very limited memory (depending on the
number of states), more complex models like the Mealy Machine [Mea55] can
sustain more states. Unfortunately all types of FSMs suffer from the problem
of the limits set by the discretization of their possible inputs and outputs.
In other words, fine-tuning a specific action would probably require a huge
number of states and transitions that would defeat the purpose of the whole
model. This increase of states also enlarges the search space presented by the
FSM model, which makes the optimization task more difficult. Nevertheless,
they also have a growing application field and can be evolved by various meta-
heuristic algorithms [SG10].

One of the most popular and oldest technique mentioned in conjunction
with evolution are artificial neural networks (ANNs). These are simplified
representations of biological neurons and synapses that have been applied in
classification and many machine learning tasks in the last 50 years. Since ANNs
can theoretically approximate any non-linear function with enough neurons,
they exhibit excellent capabilities, such as noise tolerance and generalization.
Some versions of them also have some consistent internal states. Furthermore,
these benefits can be further combined with other representations such as fuzzy
logic or decision trees [LH05]. The price one has to pay for these properties
is that neural networks are black box models, meaning that it is an extremely
difficult task to reverse-engineer and understand how a given ANN works. They
are very parameter intensive, increasing the search space rapidly as new neurons
are introduced.

31



3.3 Design Methodology 3 Design by Evolution

An interesting and widely-used approach is genetic programming
(GP) [Koz92]. The idea, first introduced in 1985 [Cra85] is that the represen-
tation is a complete computer program mostly represented in a tree structure,
where the nodes are either operators or operands. Thus, programming lan-
guages that are naturally based on tree structures are favored (e.g., Lisp). The
advantage of GP is that it does not impose any fixed length on the solution,
thus the algorithm can find the size necessary for a solution itself. Since GP
also provides a complete program, requirements such as special functions or
memory can be easily added to it. However, the main disadvantage of this
approach is the immense search space usually associated with it.

3.3.4 Search Algorithm

The task of the search algorithm is to optimize the decision unit models of the
components according to the objective function that is typically defined on the
global behavior of the system. Mathematically we can define a design vector

x = (x1, x2, . . . , xn)T (3.1)

where the components xi of x are the decision variables. The objective function

fi(x), (i = 1, 2, . . . , N) (3.2)

describes i = 1, 2, . . . , N single objectives. The space spanned by the decision
variables is called the search space, while the space formed by the objective
function values is called the solution space.

When the optimization problem is formulated correctly, the main task is
to find the optimal solutions by some iterative mathematical solution. As
figuratively expressed by Rechenberg [Rec94], it is like finding the tallest hill in
an unknown landscape. Initially we look at random places and then move to
another plausible location and so on, until the we reach the termination criteria,
which is either the maximum number of allowed steps or another indicator that
the solution cannot be further improved.

Some algorithms such as simulated annealing use single point exploration,
much like a trajectory-based search that is in general very effective in simple,
mostly unimodal landscapes. Unfortunately, the solution space of evolved self-
organizing systems is rarely that simple, and thus requires more sophisticated
search algorithms. Such algorithms usually employ many parallel exploration
agents sharing information, thus applying the principles of the so-called swarm
intelligence. A well-known example of such an algorithm would be particle
swarm optimization [KE95]. Additionally most modern algorithms use tech-
niques to improve the search agents during the process. They use only the best

32



3 Design by Evolution 3.3 Design Methodology

solutions (or agents) and apply random-driven operators on them to replace
the worst ones, while evaluating each individual’s fitness in combination with
the system history.

When the search space is extremely large, the search process might take
a very long time. Theoretically, if there is no time limit and every point of
the search space is accessible by the algorithm, it is possible to find the global
solution for the problem. Due to the fact it is not practical to evaluate every
point in the solution space, the aim is to find good feasible solutions in an ac-
ceptable timescale. Unfortunately, there is no guarantee that the best solution
will be found, but the idea is to use an efficient algorithm that most of the time
produces good quality solutions.

As stated above, meta-heuristic algorithms try to compromise between local
search and randomization. These two components are also known as intensi-
fication and diversification, or exploitation and exploration. The former tries
to refine the actual best solutions in order that the solutions converge towards
optimality. On the other hand, exploration via randomization helps to avoid
getting stuck at a local optima, and at the same time increases the diversity of
the solutions.

There have been many such efficient algorithms proposed for evolving sys-
tems. However, there exists so far no single algorithm or a guideline that
tells the designer which one is best suited for a given problem. In this thesis
we address the evolvability of self-organizing technical systems from various
perspectives. Therefore, we restrain ourselves to use only several well-known
evolutionary algorithms. A complete demonstration and comparison of avail-
able approaches is thus outside the scope of this work. Nevertheless, a good
overview of available meta-heuristic algorithms and their application fields can
be seen in [Yan08].

3.3.5 Engineering the objective function

The objective function is essentially a mathematical representation of the force
that drives the optimization algorithm towards good solutions. In literature, it
has many names, such as fitness function, cost function, or utility function and
can be the target for maximization or minimization depending on the problem.

As written in Equation 3.1, it either has one or many objectives resulting
in a single or multi-objective optimization problem. Multi-objective functions
can also be partially substituted with a single-objective function which encap-
sulates all the objectives in a priority sequence such as a weighted sum. The
advantage here is that the performance of a candidate can be represented in
a single numerical value instead of a vector which could make analysis much

33



3.3 Design Methodology 3 Design by Evolution

easier. However, finding the correct utility values (i.e., weights) is generally not
a straightforward task. Additionally, multi-objective functions offer the possi-
bility to analyze the solution’s behavior with respect to all defined objectives.
Thus, they provide a deeper insight on the driving forces of the component (see
Chapter 6).

The fitness function that rewards the desired emergent behavior is usually
highly problem-dependent, although there are studies available in evolutionary
robotics on possible generic methods [NBD09]. In order to classify each of them,
Floreano and Urzelai et al. proposed a three-dimensional fitness space [FU00],
which can be generalized for evolving self-organizing systems with the following
dimensions:

Functional vs. behavioral: A functional fitness is based on components
that directly measure the way in which the system functions. A behav-
ioral one however, rewards the system for displaying a given behavior.
This can be also seen from the perspective of instantaneous or temporal
fitness.

Global vs. local: Global fitness rewards the system based on information
that is available to an external observer, while the local one is restricted
to information available to a single component. Usually, it is easier to use
global fitness, however it carries the risk of introducing some bias from
the experimenter.

Explicit vs. implicit: An explicit function rewards the way in which a cer-
tain goal is achieved (e.g., a trajectory), while implicit fitness is focused
on how much the goal is reached (e.g., a distance). Implicit functions
are also extensively used in search algorithms operating the behavioral
space [LS11].

In certain cases, analyzing the results of different evolutionary experiments
might turn out to be difficult, if for example, a clear best approach cannot be
determined. This mostly happens due to the poor expressiveness of the fitness
function. Under this we mean the following properties:

Comparable: This property indicates if a clear relation between any two val-
ues can be determined. If so, the function is fully comparable, otherwise
a dominance relation will exist. Typically, non-dominance happens when
using multi-dimensional fitness functions, for example between values on
the Pareto-front.

34



3 Design by Evolution 3.3 Design Methodology

Transitivity: An objective function is transitive if the following property ap-
plies to it:

f(a) > f(b) ∧ f(b) > f(c)⇒ f(a) > f(c), where {a, b, c} ∈ S

Selection based on non-transitive functions is difficult to define. A pos-
sible but more resource-consuming approach is to perform a full set of
pariwise comparisons resulting in n(n− 1)/2 comparisons. If this is not
possible, approximate ranking can be used for a cost of accuracy [EIF09].

Normalized: Indicates if the function returns values between given bounds
(typically 0 and 1). This property can be useful for particular EAs, for
example when using roulette-wheel selection in evolutionary algorithms.

Evolutionary design regularly receives criticism saying that if the designer
knows a good objective function, then the task is already solved. However, in
the field of evolving complex systems, where the level of interconnectivity of
the components is very high, it is extremely difficult to directly relate to the
system’s behavior even if the local rules are clearly understood. However, this
criticism also reveals the importance of the objective function in the design
process. In fact, it is the heart of the whole evolutionary approach, since the
resulting system can only account for the behavior that is expressed by this
function.

While it is almost impossible to give a general guide on objective function
design, the following set of principles can guide the designer:

Type: Consider the expectations from the system: is the aim to bring the
system in a specific state under given conditions (e.g., distributed syn-
chronization), or the focus is on the changes of the environment as an
effect of the system (e.g., foraging)? Knowing the right focus will im-
prove the quality of the objective function.

Dynamics: Self-organizing systems are almost never static. In fact, their
emergent behavior is a result of the underlying dynamics of their com-
ponents. Therefore, it is advised to formulate a function that considers
these dynamics. In other words, the objective function should be defined
on a dimensionless timescale, rather than in a specific point in time (e.g.,
end of the simulation run).

Knowledge: It is often beneficial to add as much information to the function
as possible. While a possible solution to this might appear too complex
to the human designer, there could exist a simple solution discovered by

35



3.3 Design Methodology 3 Design by Evolution

evolution. However, care should be taken not to introduce too much bias
by the experimenter, which would lead to sub-optimal results. Evaluation
of the initial results can help to reveal such problems.

Fail-safe: As above, states that should be avoided should also go into the
function to ensure fail-safe operation.

Guidance: Multiple objectives can form a multi-objective function, but in
general it is more advised to find hierarchical levels between objectives
in order to guide evolution. If an objective proves to be too difficult
for the system, it might help to decompose it into simpler sub-objectives
with lower utility value, for example, to evolve robots playing soccer it
is a good approach to reward kicking since it directly correlates to the
number of goals, and consequently to the fitness of the solution.

36



CHAPTER

4
FREVO: A Tool to De-
sign Self-organizing Sys-
tems

If you want to teach people a new way of thinking, don’t bother trying
to teach them. Instead, give them a tool, the use of which will lead to
new ways of thinking.

– Richard Buckminster Fuller

Traditionally, systems are built like a jigsaw puzzle – each system com-
ponent has to fit in order to get a correct working system. When building
complex systems, this approach is very difficult to maintain. One drawback is
that the designer of a self-organizing system has to give up “direct” control.
Instead, the intended goal is achieved indirectly by defining the micro-level
behavior. This is typically a very difficult task, since the global behavior of
a system of interacting agents can hardly be predicted for a given set of local
rules. In some cases, the emergent behavior appears to be the opposite of what
is expected [Res97].

In order to apply the earlier proposed design methodology, we need a proper
software tool that fully supports this approach. While there are already many
powerful frameworks for agent-based simulations and evolutionary methods,
here is a need for a generalization of design and implementation of such self-
organizing systems to reduce the set-up time for a problem and improve its
evaluation possibilities. In this chapter we introduce FREVO (FRamework for
EVOlutionary design), a framework that reflects the component-wise thinking
required for the evolutionary approach. FREVO splits the design of a system
into a problem, representation, and optimization allowing for exchange of differ-
ent parts seamlessly. Appropriate interfaces simplify the design process, and it
supports statistics and graph generation in order to help the evaluation of such
self-organizing controllers. Furthermore, it is possible to validate and evaluate
the obtained results on a large scale of parameters within the tool. FREVO
has been successfully applied to various problems, from cooperative robotics

37



4.1 State-of-the-Art 4 FREVO: A Tool to Design SOS

to economics, pattern generation and wireless sensor networks. Parts of this
chapter have been published and presented at the 1st International Workshop
on Evaluation for Self-adaptive and Self-organizing Systems [SFE12].

4.1 State-of-the-Art

Agent-based modeling is one of the most frequently used approaches in the do-
main of design and analysis of complex systems. Consequently, there is a vast
number of software tools offering features for building large-scale distributed
systems. For example, JADE [BR01] supports the development of agent appli-
cations in compliance with the FIPA1 specifications. The Repast suite [MN09]
integrates many existing modeling and simulation tools from the last 14 years.
MASON [LCRP+05] focuses on simulation and visualization of multi-agent sys-
tems. The problem with these tools is that even though they are very powerful
in code re-usability and flexibility, they often do not include advanced machine
learning or optimization features, or they lack any bridging between them. In
these cases the user is left to re-implement the required features which often
need deep programming knowledge or expertise in algorithms.

In the field of optimization and artificial intelligence, more and more
researchers tend to make their implementation public. However, these
packages focus only on one specific optimization method (e.g., genetic
algorithms [Mef12]) or on one target representation (e.g., neural net-
works [SBW+10]). On the other hand, general-purpose libraries provide a
larger set of methods and/or representations to the user [IGHM08, Abe09],
but they either lack the possibilities for the user to easily exchange methods
and representations within the same problem.

4.2 FREVO Architecture

Our proposed framework FREVO, supports engineers in evolutionary design
and evaluation of self-organizing systems. It provides the necessary tools to
make an agent-based model of a desired self-organizing system and to search
for the required local interaction rules using iterative heuristic search. In ad-
dition, FREVO supports the evaluation of evolved solutions under predefined
conditions.

The main feature of FREVO is the component-wise separation of the key
building blocks that conforms to the evolutionary design methodology. In short,

1http://www.fipa.org

38



4 FREVO: A Tool to Design SOS 4.2 FREVO Architecture

Figure 4.1: Overview of FREVO’s graphical interface while selecting a problem
component

the problem component models the ecology of the agents along with the goals
of the simulation. The models of the system’s components are defined in the
representation part and they are optimized with the algorithm defined in the
method. This structure enables the components to be designed separately al-
lowing the user to easily change and evaluate different configurations, methods,
and representations. FREVO is written in Java and makes use of Java’s object-
oriented model by defining interfaces to generic parent components. When a
new component type needs to be added, the user is required to write the code
for the component. In this task, the user is assisted by a built-in compo-
nent generator tool and guided by the methods required by Java’s interfaces.
Problems can be easily developed within the Java language, but FREVO also
provides helper classes to connect to an external simulation tool. Such archi-
tecture also allows the exchange of research ideas or engineering solutions in a
flexible way.

For easier access, FREVO comes with a graphical user interface allow-
ing the engineer to pick the particular components for a project (see Fig-

39



4.2 FREVO Architecture 4 FREVO: A Tool to Design SOS

Figure 4.2: FREVO components: (problem, optimization Method (blue), represen-
tation and ranking)

ure 4.1). This component concept also supports fast evaluation of different
configurations, for example, in order to see which controller representation
(e.g., neural network vs. finite state machines) works better for solving a given
problem. FREVO is released as open source under GPL v3.0 (available at:
http://http://frevo.sourceforge.net/).

In the following sections, we define the four component types within
FREVO. As depicted in Figure 4.2, the architecture introduces a waistline
interface between the problem (top) and the other parts of FREVO. This eases
modeling of a new problem – only a few methods have to be provided: an
interface for connecting the agent’s I/O to the agent controllers, a method
for evaluating the problem (typically by a simulation run) and a fitness value
that is given as feedback from an evaluation. A single composition of a prob-
lem, method, representation and ranking defines a so-called FREVO session
containing details of parameters set for the experiment.

In order to store simulation data for later experiments and evaluations,
FREVO saves individual sessions and results in a compact XML format that
can be easily accessed, displayed and archived using tools available within the
program.

40



4 FREVO: A Tool to Design SOS 4.2 FREVO Architecture

Figure 4.3: Implementing a new problem class in FREVO. The user is required
to implement the objective function and a simple getter function that returns the
theoretically maximum value (if available)

4.2.1 Problem definition

In the problem definition, the evaluation context of the agent’s behavior has to
be implemented. In other words, this component is responsible for the evalua-
tion of the candidate representations. From the perspective of the design archi-
tecture, this part is responsible for defining the ecology of the agents i.e., how
they interact with each other and their environment. One has to also imple-
ment the objective function here that drives the heuristic optimization process.
Currently, FREVO supports normal fitness functions in the genotype space, as
well as and functions that measure behavioral diversity in the phenotype space.

Due to the simplified nature of interfaces within FREVO, implementing
a new model takes little effort. It is also possible to connect FREVO with
external simulation tools such as JProwler [SVML03] or ArGoS2 [PTO+12].

There are two types of problem components: The first variant is to im-
plement a subclass of AbstractSingleProblem (see Figure 4.3), it connects a
controller into a simulation and returns a fitness value as the result. In a multi-
agent system, each controller would have the same behavior. An example of
this problem type would be a group of robots in a cooperative search mission.

The other variant, implemented as a subclass from AbstractMultiProblem,
evaluates multiple candidates relative to each other. An example would be a
simulation of two soccer teams playing each other. The result of such a simula-
tion only gives a relative ranking and requires to run a tournament algorithm

41



4.2 FREVO Architecture 4 FREVO: A Tool to Design SOS

to get a ranking of a pool of candidates. Details on the actual implementation
of problem components will be elaborated in more detail in later chapters.

4.2.2 Candidate Representation

The candidate representation describes the structure and model of the agent’s
controller, i.e., the representation of a possible solution. In principle, FREVO
does not operate on candidates that are simple data structures, instead they
have to contain a generic structure that encodes a reactive behavior as de-
scribed in Chapter 3. For example, artificial neural networks (ANNs), decision
trees, genetic programs, or finite state machines. Furthermore, this implemen-
tation must extend from the AbstractRepresentation class that is agnostic
about the selected problem or the optimization method. Reproduction op-
erators (e.g., mutation, crossover) have to be defined within this component.
Additionally, these components can optionally support different output formats
for later processing or analysis. For example, the ANN representation provides
an export of the network structure in the Pajek [dNMB02] format.

FREVO also support problems that evaluate a set of candidates instead of
a single one in the form of bulk representations. Such heterogeneous systems
usually require a mix of different types of agents. A good example would be
a wireless sensor network where some nodes are mostly responsible for relay-
ing information while other nodes do some onboard processing as well. The
application of heterogeneous swarms of robots is also focus of many research
activities.

The base release version of FREVO comes with the following representa-
tions:

• Fully-meshed net : A time-discrete, recurrent ANN with one hidden layer
where each neuron is connected to every other neuron and itself. During
evolution, the biases of each neuron, plus the connection weights are taken
into account. This representation support adaptive mutations.

• Three-layered net : A similar ANN to the previous one, but with a feed-
forward structure instead of the fully-meshed one. Provides a lower
search-space for less complex problems. This representation is suitable
for problems of lower complexity. For the same number of neurons, the
three-layered net comes with a significant smaller search space than the
fully-meshed net.

• NEAT net : An ANN whose connectivity structure is also taken into
account for selection during evolution. This representation was imple-

42



4 FREVO: A Tool to Design SOS 4.2 FREVO Architecture

mented based on the Neuroevolution of Augmenting Topologies (NEAT)
model described in [SM02].

• HebbNet : A fully connected, recurrent artificial neural network with heb-
bian learning. This is an unsupervised learning method which changes
the ANN connection weights during evolution. Each synapse weight is as-
signed a plasticity which defines its ability to learn. Plasticity and initial
weights are evolved.

• MealyFSM : A Mealy Machine [Mea55] whose structure and transition
probabilities are evolved.

• SimpleBulkRepresentation: Encapsulates a composition of various other
representations.

4.2.3 Optimization Method

The optimization method (AbstractMethod) is used to maximize the fitness re-
turned from the problem definition. Typically, an optimization method creates
a pool of possible candidates from the solution representations, evaluates them
using the problem definition and gradually obtains candidates with better per-
formance. FREVO support evaluations in the genotype level with traditional
fitness measures, as well as evaluation functions defined on the behavioral space
as initially proposed by Lehman and Stanley et al. [LS11]. Methods never im-
plement reproduction or randomization functions that are executed directly on
the genotype. Instead, they can call for certain types of operators that are
implemented within the provided representation class.

Currently, we have the following two optimization methods provided in the
release version of FREVO:

• RandomSearch: A very simple optimization algorithm that replaces can-
didates with low fitness values with completely random ones. This
method is meant to be a base for comparison only.

• NNGA: An evolutionary algorithm that supports multiple populations,
different selection schemes (e.g., roulette wheel selection) while trying
to maximize population diversity [EK07]. The name NNGA stands for
Neural Network Genetic Algorithm but it works for other representations
as well.

• GASpecies : An evolutionary algorithm that sorts candidates into species
based on a similarity function defined on their genotypes (similar struc-
tures are put into the same species). In order to prevent immature solu-

43



4.2 FREVO Architecture 4 FREVO: A Tool to Design SOS

tions from dying out too early candidates share their fitness with others
in the same species. For more details of this technique see [DG89].

• CEA2D : A cellular evolutionary algorithm that arranges candidates in a
two-dimensional map and performs genetic operations such as selection,
mutation and recombination in a local context, i.e., in the respective
Moore neighborhood of a candidate. This algorithm has a slower con-
vergence rate, but better population diversity than a standard genetic
algorithm.

• NoveltySearch: A genetic algorithm that rewards behavioral diversity
instead of normal fitness. Code is based on Ken Stanley’ rtNEAT imple-
mentation (UT Research Licence) [Sta08].

• NoveltySpecies : Similar to the one above with speciation included to
support complex structures like NEAT.

4.2.4 Ranking

The ranking module evaluates all candidates and returns a descending sorted
list based on their performance. For problems that give an absolute value of
fitness (e.g., the control problem of an inverted pendulum), this means eval-
uating each candidate and then sorting them according to their fitness. In
case of problems derived from AbstractMultiProblem], solutions can only be
compared relative to each other (e.g., a soccer team). Thus, it is necessary to
infer the ranking from pairwise comparisons. For this, FREVO allows one to
choose between several ranking mechanisms, defining how to pair the solutions
in order to find a dependable ranking with a low number of comparisons (i.e.
simulation runs). This concept will be elaborated in more detail in Chapter 7.
Additionally, ranking components are responsible for parallelizing evaluations
in order to decrease the overall simulation time.

At this time, FREVO contains the following ranking components:

• AbsoluteRanking : A basic component that sorts candidates based their
fitness values returned directly from the problem component. Supports
multi-threading to improve evaluation speed.

• FullTournament : Ranking designed for problems where an absolute fit-
ness cannot be determined. Sorts the candidates based on a round-robin
style tournament that requires n(n − 1)/2 number of pairings for popu-
lations of n candidates.

44



4 FREVO: A Tool to Design SOS 4.3 FREVO Example Problem

• SwissSystem: Similar as above, but is based on a swiss-style tournament
that uses only ndlog2 ne number of pairings.

• MultiSort : A sorting algorithm which ranks by always evaluating a group
of randomly selected entities where each entity will be selected with equal
times.

• MultiSwiss : This ranking method is a combination of the two components
above. It is capable of evaluating problems with any number of players.

• NoveltyRanking : Ranks candidates based on their novelty in the behavior
space instead of fitness. Can be applied in a similar way as AbsoluteR-
anking.

For an overview of component class hierarchies see Figure 4.4.

4.3 FREVO Example Problem

FREVO has been used for the evaluation of many case studies, involving evo-
lutionary robotics [FE09b, FE09a, FE10, PBSE12], pattern generation [EF11],
and wireless sensor networks [CLNR12].

In this section, we show the capabilities of FREVO by way of a simple sce-
nario that investigates different control algorithms for a set of self-organized
unmanned aerial vehicles in order to cooperatively achieve maximum cover-
age of a partially obstructed area under certain constraints like limited time
(minimum time-to-complete) and minimum energy (with minimum number of
turns) [Cho01]. The area to be covered is modeled as a time-discrete and
space-discrete lattice of obstacles and free space. We evolve and test different
controllers based on artificial neural networks and compare them with naive
algorithms like random walk and random direction. We will not go into deep
analysis on the obtained results, since the aim here is to demonstrate what is
possible with FREVO.

Using FREVO, we define this scenario as a problem component. The pro-
vided component creator helps to set up the necessary class with the needed
methods and the required XML configuration file. Since an agent’s perfor-
mance can be directly assessed we chose our problem to be a child of the
AbstractSingleProblem class. The design of the problem requires the defini-
tion of the environment, the input values and output types for the candidate
representation being evaluated (which we do not have to implement). Addition-
ally, we need to define a fitness function that will be used by the optimization
method. In this experiment we study only homogeneous sets, thus every agent

45



4.3 FREVO Example Problem 4 FREVO: A Tool to Design SOS

F
igu

re
4.4:

F
R

E
V

O
’s

com
p

on
en

ts
w

ith
class

gen
eralization

s
an

d
d
ep

en
d
en

cies

46



4 FREVO: A Tool to Design SOS 4.3 FREVO Example Problem

will be initially created as an identical copy of the same candidate representa-
tion that is being evaluated.

We model the environment as a 2-dimensional grid, whose size can be ad-
justed with 2 parameters (width/height). During simulation, a cell can be
either free, blocked, or occupied by a single agent. We will run all experi-
ments both without any obstacles, as well as with predefined amount of grid
cells blocked. In each time step of the simulation, every agent receives sensory
information about their direct von Neumann neighborhood regarding blocked
cells and other agents. Afterwards, they can decide to move in any of the
neighboring cells that are free. In order to simplify the simulation, we use only
binary inputs with 2 sensors indicating the presence of obstacles/other agents,
such that we end up with 2× 4 number of inputs indicating if the related cell
is blocked/occupied or not. A single output of the agent’s controller is mapped
to the four possible states (up, down, left, right).

In order to obtain a fair comparison between various control strategies and
evolutionary techniques we measure the fitness as the average coverage rate
achieved over all runs. We define a cell covered if it has been visited at least
once by one of the agents. Therefore, multiple visits do not improve the fitness
any further.

4.3.1 Experimental setup

For our scenario, we select our problem together with an existing representation,
optimization and ranking method. In the following paragraphs, we will explore
which combination of optimization method and candidate representation allows
for the most stable results. For the optimization method, we make a session
with NNGA and another one using the CEA2D method. The representation
can be either a three-layered neural network, or a fully-meshed one with 2
hidden neurons. We chose empirically to evolve 500 generations, because the
fitness values stabilized. Our problem is configured for 5 agents with initial
random positions on a 20 × 20 grid with either 0% or 15% of blocked cells.
The length of a single run is set to 100 steps. The fitness is calculated based
on the system state after these 100 steps. To account for random effects, we
repeat every single evaluation and each complete evolution run 20 times with
different random seeds and present the fitness development as box plots per
generation (FREVO generates automatically the correct output for generating
boxplots of the fitness with R). We configured the evolutionary methods with a
population size of 50, 40% mutation, 30% crossover rate and 15% elite selection.
Table 4.3.1 summarizes the tested experiment configurations.

47



4.3 FREVO Example Problem 4 FREVO: A Tool to Design SOS

Obstacle % Method Representation

0 NNGA Three-layered net

0 NNGA Fully-meshed net

0 CEA2D Three-layered net

0 CEA2D Fully-meshed net

15 NNGA Three-layered net

15 NNGA Fully-meshed net

15 CEA2D Three-layered net

15 CEA2D Fully-meshed net
Table 4.1: Configurations used for the case study.

4.3.2 Results

Let us first investigate the effect of the different neural network controllers.
As seen on Figure 4.5, the average area covered by the three-layered network
is around 10%, which is much less compared to its fully-meshed counterpart
with 36%. This effect can be explained by the fact that feedforward neural
networks do not possess any feedback mechanisms that could serve as some
memory. Such simple controllers cannot even perform a regular sweeping be-
havior. However, fully-meshed networks are able to cope with situations where
they require at least the information of which direction they came from, thus
can exhibit more complex behavior.

Figure 4.6 shows the comparison of different evolutionary algorithms work-
ing on the fully-meshed network with 15% blocked cells. The results indicate
a higher overall performance with a maximum of approximately 56% cover-
age when the cellular evolution is being used. This is most likely accounted
to the higher diversity kept during evolution, which is shown on Figure 4.7.
One can also observe a lower fitness variation indicating a more stable run.
Our results indicate that fully-meshed net performs significantly better than
the three-layered one. This problem is easier to be solved with agents that
memorize an internal state during evolution.

It is easy to define different scenarios to be compared using FREVO. One
can decide what optimization method or candidate representation results in the
most stable and best performing simulation/system for a given problem. The
next step is to validate and evaluate the resulting candidate representation.
FREVO generates result files that can be loaded after evolving the candidates.
The result file contains all settings and a complete state of every representation
in the population of the last evolved generation, ranked by fitness. One can
also configure in the optimization settings that the results files are periodically
written every nth generation.

48



4 FREVO: A Tool to Design SOS 4.3 FREVO Example Problem

Figure 4.5: Fitness development vs. number of generations with different neural net-
works. Optimization method: NNGA, obstacle percentage: 0%. The Fully-meshed
net clearly outperforms the Three-layered net in every generation.

Figure 4.6: Fitness development vs. number of generations with different optimiza-
tion methods. Representation: Fully-meshed net, obstacle percentage: 15%. CEA2D
outperforms NNGA in almost every generation.

An overview is given in Figure 4.8, where, on the left-hand side, the candi-
dates are listed. By selecting one candidate, it can be replayed with the same
settings as used during the evaluation. In order to test with different settings,
the parameters can be adjusted in the window to the right. For example, the

49



4.4 Summary 4 FREVO: A Tool to Design SOS

Figure 4.7: Diversity development vs. number of generations, optimization method:
NNGA (left), CEA2D (right) representation: Fully-meshed net, obstacle percentage:
15%.

scalability of the evolved candidate can be evaluated by adjusting the num-
ber of drones, or we can test simple, non-evolved controllers, like random walk
(drone moves in a random direction each time step), or random direction (drone
moves in a direction that is changed randomly if an obstacle is encountered).
FREVO gives us the average fitness of 100 runs by quickly running 100 simu-
lations with different seeds. In our scenario, random walk provides a coverage
of approximately 41.2%, while random direction 47.1%.

An additional feature of FREVO is the possibility to implement graphical
evaluations, to learn and validate the evolved behavior. For our scenario, we
implemented a simple display class, that is based on the JGridMap2 open-
source grid visualization engine. A sample of the drones exploring a partially
obstructed are can be seen on Figure 4.9.

4.4 Summary

We introduced FREVO, a tool for designing and evaluating self-organizing sys-
tems. FREVO concentrates on evolutionary methods for agent controllers, as
often applied in autonomous robots, but extends this principle to arbitrary ap-
plications. With the principle of reusable, independent components, FREVO

2http://sourceforge.net/projects/jgridmap

50



4 FREVO: A Tool to Design SOS 4.4 Summary

Figure 4.8: FREVO in evaluation mode. Left: list of candidates, right: configurable
parameters

allows for easily exchanging different implementations of evolvable agent con-
trollers, optimization methods and ranking methods. A simple example can
be implemented with a few lines of code. The implementation effort is thus
reduced to defining the context, the fitness function and define input and out-
put of the agent. After evolving the agent controllers, the simulations with
the resulting candidates can be replayed either with the same settings or with
different parameters for evaluation purposes. As an example, we implemented
a system of mobile agents with the task of covering a partially obstructed area
defined on a simple grid. We compered two different neural network controllers
and two different evolutionary algorithms. We also showed how simple algo-
rithms perform in this task.

51



4.4 Summary 4 FREVO: A Tool to Design SOS

Figure 4.9: UAV example project visualization with 5 drones and 15% obstacles.
Black cells are blocked, while grey ones are covered. The blue dots indicate the
position of the drones.

52



CHAPTER

5
Evolving Spatial Patterns
via Self-organized Agents

The phenomenon of emergence takes place at critical points of insta-
bility that arise from fluctuations in the environment, amplified by
feedback loops. Emergence results in the creation of novelty, and this
novelty is often qualitatively different from the phenomenon out of
which it emerged.

– Fritjof Capra, The Hidden Connections

This chapter depicts and evaluates the evolutionary design process for gener-
ating a complex self-organizing multicellular system based on cellular automata
(CA). In the presented model the cell behavior is controlled by an artificial neu-
ral network according to the cell’s internal state. The idea is to evolve the cell
rules in a way that a previously defined reference pattern emerges by inter-
action of the cells. Unlike similar approaches that operate with well-defined
morphogens, in our study we try to minimize the designer’s bias by including
the communication protocol in the genotype as well. This problem is easily un-
derstandable and provides an accessible way to explore the domain of evolving
self-organizing CAs. We test reference patterns of different complexity, for ex-
ample flags, natural patterns, and paintings in order to map their evolvability
with the corresponding complexity. Furthermore, we analyze the performance
of different fixed neural network structures to understand what level of com-
plexity is required for a nontrivial structure. We then compare this result to
an approach that tries to find the optimal neural network structure for a given
problem.

We find that generating simple regular structures such as flags or shapes
can be learned relatively easy, but for complex patterns for example paintings
or photographs the output is only a rough approximation of the overall mean
color scheme. Thus, an increase of complexity dramatically lowers the quality
of the evolved solutions, while the number of steps required to produce a given
image seems to be unaffected by the difficulty of the problem. Our results also

53



5.1 Introduction 5 Evolving Spatial Patterns

indicate that complex images present a very difficult problem which cannot be
solved with the current approach even with neural networks with more complex
structures.

The application of a genotypical template for all cells in the automaton
greatly reduces the search space for the evolutionary algorithm, which makes
the presented morphogenetic approach a promising and innovative method for
overcoming the complexity limits of evolutionary design approaches. Parts
of this chapter have been published and presented at the Fifth International
Workshop on Self-Organizing Systems (IWSOS 2011) [EF11].

5.1 Introduction

As shown by many examples in nature, simple interaction rules between sub-
systems can lead to quite complex emergent behavior [CFS+01]. Pattern for-
mation studies visible and orderly results of such self-organizing systems. Many
naturally occurring complex systems produce visible patterns, for example cell
development and differentiation, chemical reaction-diffusion systems, and cloud
formations. A typical purpose of patterns in living systems is visual mimicry,
i.e., as the similarity in the appearance of one species to another (e.g., the yel-
low coloring and stripe patterns on several species of flies that mimic wasps). A
special form of mimicry, called camouflage, occurs when a species appears sim-
ilar to some abiotic environment. Some forms of mimicry (e.g., color change in
some species of chameleons) are able to function at short time scales such that
the organism can quickly induce a different pattern based on its environment.

Pattern formation in general is studied in developmental biology in terms
of cell fate control through a morphogen gradient. A morphogen has been
conceptually defined in the 1960s by Lewis Wolpert using the French flag model
[Wol69] where the colors of the French flag represent the effects of the morphgen
on cell differentiation. Herman and Liu [HL73] have solved this French flag
problem through the simulation of linear iterative arrays of cells.

Patterns resembling natural ones can be reproduced by cellular automata
(CA) models running simple algorithms. It is however, difficult to find the
correct algorithm for an intended pattern. One possibility would be to evolve
the rules using an evolutionary algorithm, but when using a model of elemen-
tary CA rules [Wei10], small changes in the ruleset can lead to large variations
in the result. Nevertheless, there are notable examples of using evolution to
obtain a desired pattern in a CA. Miller [Mil04] has created a simulated dif-
ferentiated multicellular organism that resembles the structure and coloring of
the French flag. He used a feed-forward Boolean circuit implementing a cell

54



5 Evolving Spatial Patterns 5.1 Introduction

program. The cell programs are evolved using a specialized genetic program-
ming system. Chavoya and Duthen in [CD06] have used a genetic algorithm
to evolve cellular automata that produce 2D and 3D shapes such as squares,
diamonds, triangles, and circles. Furthermore, in [CD07], an artificial regu-
latory network (ARN) for cell pattern generation, producing the French flag
pattern is evolved. Fontana generated predefined arbitrarily shaped 2D arrays
of cells through an evolutionary-developmental technique [Fon08]. He was able
to successfully generate complex patterns such as dolphin, hand, horse, foot,
frog, and the French flag. Fontana has extended this work in [Fon09] to evolve
complex 3D forms.

A typical problem in this domain is that as the system to be evolved be-
comes more complex, the evolutionary approach suffers from problems such as
disruption of inheritance, premature convergence and failure to find a satisfying
solution [BK99]. Yet, natural evolution has managed to create the very com-
plex design of life. A main difference between natural and artificial evolution
is, in many cases, the genotype-phenotype mapping. Natural organisms grow
from a single cell into a complex system, while in many applications of artificial
evolution, there is a one-to-one mapping from genotype to phenotype, leading
to poor scalability. Therefore, there is a strong need for introducing generic
genotype descriptions that can emerge into arbitrarily complex systems.

In this chapter we describe such an approach by the model of a cellular
automaton where the state-transition logic of each cell is an instance of the
same genotypical controller. Therefore, the control algorithm of every cell is
implemented by a small artificial neural network that is evolved to reproduce a
given pattern on the cellular automaton. The combination of neural networks
and cellular automata which grow under evolutionary control is present in the
China-Brain project [dGTH+08], an effort to create an artificial brain of in-
teracting small (typically 12-20 neurons) neural networks. This work, having
several aspects in common, differs from the work presented here in two aspects:
China-Brain is intended as a controller (e.g., to a robot) while in our problem
the structure and form of the cells are the output, and second, the interconnec-
tions between the modules are designed explicitly by so-called brain architects,
while they are an output of the evolutionary process for our model. Thus, we
do not define any morphogens in our model a priori. Note, that this approach
is not a simple classification task, where the cells need to learn what is the
right output for a given context, since now direct spatial information is given.
Instead, the cells have to first learn how to communicate efficiently, in order to
be able to infer on their own position.

We tested the ability of the resulting pattern formation model for repli-
cating several naturally occurring patterns (such as animal skin patterns) as
well as man-made patterns (such as flags and paintings) of different complex-

55



5.2 Cellular Automaton Model 5 Evolving Spatial Patterns

ity. The remaining parts of this paper are structured as follows: The following
section 5.2 introduces the model, i.e., the CA structure and the properties and
interconnections of the ANN. We also discuss our complexity measurement
approach. The evolutionary programming method is based on the FREVO
framework (see Chapter 4), its application for the given problem is described
in Section 5.3. Experiments including evolving several patterns and discussion
of the results are elaborated in Section 5.4. A study on the optimal neural
network structure is described in Section 5.5. Finally, Section 5.6 concludes
the chapter and sketches possible further research and applications based on
the presented approach.

5.2 Cellular Automaton Model

The used model consists of a regular rectangular grid matching exactly the
resolution and proportion of the reference image (reference images are very
small, typically 100-500 overall pixels). The colors of the reference image are
converted into a scale, where neighboring colors resemble each other. This color
transformation from RGB has been achieved by assembling a binary number
by arranging the most significant bits of the channels R, G, and B, followed
by the second most significant bits of those channels, and so on until the least
significant bits, finally yielding a 24-bit color code.

The colors which are present in the reference image are then sorted accord-
ing to the new scale and assigned to the possible output spectrum of the neural
networks. Each color gets an equal proportion of the output space, which is
continuous between 0 to 1.

Each cell is controlled by an ANN, which is modeled as a time-discrete,
recurrent artificial neural network. Each neuron is connected to every other
neuron and itself via several input connectors. Each connection is assigned a
weight and each neuron is assigned a bias value. At each step, each neuron
i builds the sum over its bias bi and its incoming connection weights wji
multiplied by the current outputs of the neurons j = 1, 2, ..., n feeding the
connections. Weights can be any real number, thus have either an excitatory
or inhibitory effect. The output of the neuron for step k + 1 is calculated by
applying an activation function F :

oi(k + 1) = F (
n∑
j=0

wjioj(k) + bi)

where F is a simple linear threshold function

56



5 Evolving Spatial Patterns 5.2 Cellular Automaton Model

F (x) =


0.0 if x ≤ 0.0

x if 0.0 < x < 1.0

1.0 if x ≥ 1.0

In total each ANN consists of 9 input neurons, 5 output neurons and 6
hidden neurons. The 6 hidden neurons have been selected based on the recom-
mendations by Boger and Guterman [BG97] and turned out to be an applicable
number in order to balance between capability of the ANN and reduction of
the search space. Nevertheless, in Section 5.5 we study the effects of differ-
ent number of hidden neurons in the network. The number of neurons and
structure of the ANNs was fixed at runtime, since the problem statement has
no dynamic aspects and networks with fixed structure have shorter evolution
times [FDM08]. One outgoing connection is used to define the cell’s color and
four pairs of incoming and outgoing neurons connect the ANN with cells of
its von Neumann neighborhood. Furthermore, an ANN can sense the colors
of these neighboring cells. This implementation does not impose an a priori
strongly defined communication scheme on the cells i.e., it is not fixed what in-
formation the cells have to communicate with each other. Instead, evolution is
expected to come up with a solution that allows the cells to efficiently exchange
crucial data required for the desired emergent behavior.

The ANN of a cell does not get any direct information about its position
in the grid. In order to allow a cell at a border or in corner to be able to
infer about its position, these cells will receive a -1.0 input from the respective
”missing” cells. During simulation, this information can propagate to the cells
in the center via the inter-cell connections. Without this information or any
external initiator mechanism emergence would not be possible.

Figure 5.1 depicts the interconnections between the ANNs via neighboring
cells in the CA model. The light bulb, which is controlled by the ANN in
the corresponding cell, indicates the current color state of a cell. Each cell
gets an instantiation of the same ANN. When the CA is iterated, its ANNs
can however acquire a different internal state that can be kept via self-holding
loops and that can lead to differentiation in the ANN’s behavior.

5.2.1 Measuring Complexity

In order to explore the limits of the evolutionary approach and to be able
to compare different methods we need a measure to assess the difficulty of a
particular problem. One solution could be to infer on the complexity of the
desired emergent pattern i.e., the reference image to be evolved.

57



5.3 Evolutionary Setup 5 Evolving Spatial Patterns

Figure 5.1: Interconnections of ANNs in neighboring cells

The complexity of an object is defined by Kolmogorov as the length
of the shortest binary computer program that describes it [Kol63, CT06].
Unfortunately, Kolmogorov’s complexity is not computable, thus in the
image processing domain it is frequently approximated by how well it can
be compressed by various algorithms [YW13]. Another approach used is
Shannon’s information theory, which measures the amount of information
present in a set of symbols [Sha48, CT06]. However, it is often calculated
without considering spatial relations between these symbols. To overcome
this issue we will use the following equation to calculate the entropy of an image:

H = −
n∑
i=1

p(xi) log2 p(xi)

where xi represents a possible cell configuration considering its own and
its neighborhood’s color. p(xi) is the probability of a particular configuration
to be present in the image. Cells on the borders are not considered in this
calculation in order to reduce bias.

5.3 Evolutionary Setup

In order to evolve the weights of the artificial neural network, we used the
FREVO framework (see Chapter 4). The modular concept of FREVO allowed

58



5 Evolving Spatial Patterns 5.3 Evolutionary Setup

Table 5.1: Parameters used for the evolutionary algorithm
Population size 100

Elite selection 11%

Mutated networks 59%

Recombination 30%

Mutation rate 3%

Grid Size 10x10

to reuse the model for the artificial neural network and the optimization algo-
rithm from previous projects, thus reducing our task to formulate and imple-
ment the problem.

For our experiments we choose the spatially structured evolutionary algo-
rithm (CEA2D) as the optimizer. This algorithm works as follows:

1: create n randomly initialized candidate networks in a population
2: place all candidates on a regular 2D grid
3: for generations
4: for x=0 to WIDTH
5: for y=0 to HEIGHT
6: neighbor list = Collect neighbors(position(x,y))
7: selected inds = Perform selection(neighbor list)
8: temp pop = Apply reproduction operators(selected inds)
9: end for

10: end for
11: Replace population(temp pop)
12: Evaluate Population()
13: end for

Algorithm 1: Cellular EA used as optimization method

The selection criteria are based on the rank (according to the candidate’s
fitness) and, in case of the random selection, also on diversity. Diversity means
that candidates which are more different to the already selected pool of candi-
dates have a higher chance to be chosen. Functions for mutation, recombination
and the difference between candidates are provided by the specific candidate
implementation. In our case, the ANNs applied mutation and recombination
on the weights and biases of the artificial neurons. The difference between the
candidates is the sum of the squared differences of all weights and biases. The
full set of parameters used for the evolutionary algorithm is listed in Table 5.1.

59



5.3 Evolutionary Setup 5 Evolving Spatial Patterns

5.3.1 Fitness function

A problem consists typically of a simulation with a generic interface to the
control system. The simulation returns a fitness value which is used by the op-
timization algorithm for evolving the system. We implemented a CA simulator
that is controlled by a representation. The first version of our fitness func-
tion was implemented as a sum of the squared color index differences between
the image after a number of iterations and the reference image. This formula
can evaluate an intermediate solution well, however as explained previously in
Chapter 3.3.5, a fitness function that includes some expert knowledge is in gen-
eral more preferred at the initial stages of evolution. Therefore, the summands
have been weighted by a function giving higher values for pixels having pixels
of different color in their neighborhood (based on the reference image). With
this attempt we reward cells that lie on the edges of possible shapes within the
image. Formally, the fitness is calculated as follows:

F (E) = −
W∑
x

H∑
y

(Txy − Exy)2ŵxy (5.1)

where Txy is the color of a pixel at position (x, y) of the reference image, E is
the image being evaluated with W width and H height. ŵxy is the normalized
weight which is calculated with the following equations:

wxy =

∑P
p (Tp − Ep)2

(Nc − 1)2
(5.2)

ŵxy =
wxy∑
w

(5.3)

where P refers to the pixels in the Von Neumann neighborhood and Nc is the
number of colors present in the reference image. However, this fitness value does
not allow a direct comparison between reference images of different dimensions
and color depth. A possible solution would be to normalize the fitness values,
which requires to define the worst-case solution to divide with. Theoretically,
this would mean a maximum color index distance at each pixel. For example,
in case of two colors this would mean the negative of the reference image. Since
we calculate squared errors, this would lead to an apparent very high fitness
even for images that are completely filled with the same color with a low index.

Therefore, we propose a method that calculates the possible average squared
error as a factor for the worst-case scenario for Nc different colors. We can
approximate it with the following equation:

60



5 Evolving Spatial Patterns 5.4 Experiments and Results

e =

∑Nc

x=0(x− Cm)2

Nc

(5.4)

where Cm is the index of the color that lies in the middle of the color spectrum.
For images with even number of colors, the average of the two middle values is
taken into account. Such a way the final normalized fitness is calculated as

Fn(E) = 1− −F (E)

e(C − 1)2 ·W ·H
(5.5)

Another important factor that we have to consider is the length of the
simulation, i.e., the number of discrete steps that we calculate. Certainly, with
longer simulations the chances that the desired structure emerges will probably
increase, it also greatly increases the overall simulation time. However, too low
number of steps might not be enough for the cells to communicate, infer on
their own position and decide on the proper color. The optimal solution would
be to find the minimum number of steps needed for a given reference image and
run the simulation only for that long. Unfortunately, it is very difficult (if not
impossible) to analytically derive this number. One possible solution would be
to run a trial-and-error process to find a suitable step number for every image.
The issue with this is that by setting a fixed minimum number the system has
to exhibit the desired pattern at a fixed time, which is probably a more difficult
(and somewhat different) task.

Instead, we decided to change the fitness function in a way that the fitness
score is calculated in each time step, and at the end of the simulation we return
the maximum of these fitness values. This way we do not limit evolution to a
particular solution, but we allow it to explore and find an appropriate number
of steps.

5.4 Experiments and Results

In order to be able to sketch the performance of the evolutionary approach as
a function of the image complexity, we tested various reference images ranging
from very simple regular structures to more complex ones. Besides low com-
plexity images like a single dot or a regular checkerboard we found flags to be
particularly interesting for this problem. They are not only very simple struc-
tures, but their complexity is in line with the French flag problem mentioned
earlier. Initially we tried to replicate the Austrian flag that has three equal
horizontal bands of red, white, and red. As next step we attempted the Hun-
garian flag, which features three equal horizontal bands of red (top), white, and

61



5.4 Experiments and Results 5 Evolving Spatial Patterns

Image Name Dimension Number of Colors Complexity

Single Point 10 x 10 2 0.35

Checker board 10 x 10 2 1.0

Austrian flag 10 x 10 1 2.5

Hungarian flag 10 x 10 3 2.75

Maple symbol 15 x 16 2 3.33

Mona Lisa 20 x 29 8 7.8

Table 5.2: Reference images used for the experiments.

green. These images are scaled to 10×10 pixels with the middle band enlarged
by 1 pixel.

Since our preliminary results were promising we tried to evolve even more
complex structures such as a downsized version of the maple symbol from the
Canadian flag. Theoretically, this is a very difficult task for a system that
considers only von Neumann neighborhoods, due to the fine details. Similarly,
the famous Mona Lisa painting in downscaled resolution has been tested to
get an idea how this approach would perform if applied to real images. For a
complete list of reference images and their complexity see Table 5.2.

5.4.1 Simple structures

We managed to get perfect solutions for the simple reference images: the single
dot, the checkerboard, the Austrian and Hungarian flag in most experimental
runs. Figure 5.3 depicts the evolution of a Hungarian flag over the generations.
Note, that the proceedings in the quality were highly non-linear over the num-
ber of generations. For example, the evolutionary algorithm got sometimes
stuck in local cost minima after about 100 generations. Thus, improvements
past these generations happen only very infrequently.

The mechanism to recreate an image over several iterations of the CA can be
observed by the example of an Austrian flag. The Austrian flag contains only
red and white color and was therefore easier to evolve than the three-colored
Hungarian one. We achieved a perfect image after running the evolutionary

62



5 Evolving Spatial Patterns 5.4 Experiments and Results

Figure 5.2: CA steps for Austrian flag; best solution after 200 generations

algorithm for approximately 200 generations. Figure 5.2 shows how the result
unfolds over several CA iterations into the intended image.

5.4.2 Complex structures

The limits of the approach can be observed when going to more complex images.
Figure 5.6 depicts the results of trying to reproduce a small image of the Mona
Lisa painting (left image). The middle image shows the downsized reference
image. The best achievable result after over 1000 generations is depicted in
the right image. The overall background color scheme is present, although,
unfortunately, Mona is missing. The main reason for this result lies in the
increased size of the image – while the flags were evolved on a raster of 10x10,
the Mona Lisa image is 20x29. Note that initially only cells at the corner and
the borders can detect their position in the image - the inner cells must rely
on propagated information. For a larger image, the ratio between border and
inner cells is more extreme. In order to check if more steps could improve
the results, we ran the experiments with a maximum of 50 steps, however this
did not yield any better solutions. This probably indicates that evolution gets
stuck to a local optima much earlier.

The low performance on more complex images can also possibly be ex-
plained by the limitations of the artificial neural network. In theory, more
hidden neurons could yield better performance, but our attempts with 6, 8,
or 10 hidden neurons did not show any improvement. The cause of this is
the increased search space the evolutionary process has to cope with. We will
investigate this problem in the following section.

Figure 5.4 shows a boxplot of the fitness obtained throughout multiple runs.
As it can be seen, with higher complexity the average fitness decreases, which
is expected. We also plotted the number of steps that yielded the best fitness
on Figure 5.5. Here, we cannot observe any direct relation between complexity
and required steps.

5.4.3 Natural patterns

Another question of interest was how well natural patterns can be evolved.
Several patterns resembling natural ones can be reproduced by CA executing

63



5.4 Experiments and Results 5 Evolving Spatial Patterns

Figure 5.3: Evolution of recreating a Hungarian flag. Best solutions over gen-
erations.

0.35 1 2.5 2.75 3.33 7.8

0.
4

0.
6

0.
8

1.
0

Complexity

Fi
tn

es
s

Figure 5.4: Fitness versus complexity. Higher complexity results in typically
lower fitness values.

simple state-transition rules of positive and negative feedback [BY99]. We
tested two images of 15× 15 pixels based on the skin patterns of a cow and a
zebra. The respective complexity values of the images are 3.1 and 3.0.

Interestingly, our evolutionary algorithm did not come up with a feasible
solution. This is likely because the fitness function was inappropriate for that
task, since it compared the potential solution pixel by pixel to a reference
image. Thus, a similar pattern is not considered as solution, although a human
observer might perceive a similar pattern as being closer to the reference than

64



5 Evolving Spatial Patterns 5.4 Experiments and Results

0.35 1 2.5 2.75 3.33 7.8

5
10

15
20

Complexity

St
ep

s

Figure 5.5: Number of steps required for the best solution. Complexity of the
structure plays no apparent role.

Figure 5.6: Attempt to reproduce the work of Leonardo da Vinci

an image that partially reproduces the original layout of objects in the image.
Figure 5.7 shows that although the created image resembles the reference one
on a pixel-by-pixel basis, the quality and type of the reference pattern is not
matched.

65



5.5 Optimizing the Network Structure 5 Evolving Spatial Patterns

Figure 5.7: Evolving a reproduction of animal skin patterns

5.5 Optimizing the Network Structure

An interesting question is how the complexity of the agents’ controllers plays
a role in the evolvability of this problem. In theory, an ANN with more hid-
den neurons can perform better by being able to approximate more complex
functions. However, more neurons mean more connection weights (and biases)
that radically enlarge the search space. Therefore, it is important to find the
optimal number of nodes that offers the highest fitness with a search space
that is still manageable by the search algorithm. Unfortunately, there is no
way to determine the optimal number of hidden neurons analytically. The op-
timal number depends on the complexity of the function to be approximated,
and, therefore, indirectly on the number of input and output nodes. Besides
a trial and error approach, there are some empirically-derived rules-of-thumb,
of these, the most commonly relied on is ’the optimal size of the hidden layer
is usually between the size of the input and size of the output layers’ [Blu92].
Swingler [Swi96] and Berry [BL04] propose a maximum of two times the num-
ber of input nodes for the hidden nodes. Boger and Guterman [BG97] suggest
that the number of hidden nodes should be 70%-90% of the number of input
nodes. Caudill and Butler [CB92] recommend that the number of hidden nodes
should be two third of the sum of input and output nodes.

In order to obtain some knowledge on the effect of different fixed network
sizes we re-ran our experiments 30 times with different seeds. We tested ANN
controllers with various numbers of hidden neurons ranging from 0 to 10. We

66



5 Evolving Spatial Patterns 5.5 Optimizing the Network Structure

●●●

●
●●

●

0 1 2 3 4 5 6 7 8 9 10 NEAT

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of hidden neurons

F
itn

es
s

Figure 5.8: Comparison of best evolved solutions for the Mona Lisa problem
with different number of hidden neurons. Results indicate a decrease of per-
formance with higher number of hidden neurons. The NEAT algorithm also
cannot outperform fixed neural networks with very low number of hidden neu-
rons.

used the Mona Lisa problem, as it turned out to be the most difficult one for
the evolutionary approach. Every other parameter has been retained from the
previous experiments.

As depicted on Figure 5.8 the results indicate decreasing performance when
using more hidden neurons. Thus, the best performance is achieved when using
no hidden neurons at all. A possible explanations for this phenomena is that
the problem is already too difficult, even for more complex neural networks,
so that the simplest configuration can be evolved best. Note, that cells have
to propagate information and remember on the passed information as well. It
also shows that having more neurons does not necessarily helps the process.

Another interesting approach to find the optimal neural network structure is
to use a complexifying algorithm such as NEAT [SM02]. This algorithm starts
from the simplest structure having no hidden layer and its structure gradually
evolves along with the respective weights and biases. NEAT uses speciation and
fitness sharing to protect candidates with novel structures to be selected out
early. FREVO implements NEAT as a candidate representation component,
therefore making a direct comparison to the previous results possible. We
ran the same experiments and found that NEAT also cannot achieve better
performance than the fixed-sized networks with low number of hidden neurons

67



5.6 Summary 5 Evolving Spatial Patterns

(See last column on Figure 5.8). On average, neural networks evolved by NEAT
have 3.5 hidden neurons which is similar to the performance of the fixed neural
networks with similar structures. This result also supports the idea that the
task is too difficult to be solved with the current approach, even with higher
number of gradually introduced neurons and synapses.

5.6 Summary

We depicted and evaluated the evolutionary design process generating a multi-
cellular system out of a genotypic description for a single cell. The mechanisms
have been realized via the open source FREVO framework for evolutionary de-
sign (see previous chapter). At the beginning of each simulation, all cells had
the same state and commenced their operation at the same time - this is com-
parable with a number of people cooperatively drawing an image in the dark.
This differentiates our problem from the ones in the literature, where usually
a zygote cell is given, from where the other cells grow. Still, the evolutionary
process evolved a solution where also some eminent cell (typically a particular
corner cell) serves as a zygote.

The main contribution of this work is not presenting an algorithm for ”draw-
ing images in the dark” but rather presenting a proof-of-concept on integrating
ANNs into a CA in order to initiate a morphogenetic process. Furthermore,
it servers as a good case study for evolving self-organizing systems due to its
simplicity and easily understandable results. We also introduced a complexity
metric based on spatial entropy that can be used to investigate the evolvability
of reference images with increasingly complex patterns.

The best results have been achieved when evolving simple structures with
large areas of a single color as they are present for example in flags. For more
complex images, the current setup causes the evolutionary algorithm to get
stuck at a suboptimal stage. Our findings also show that this task can be very
difficult even for more complex neural networks. Our attempts using NEAT -
an algorithm that optimizes the neural network structure - performed similarly
as fixed neural networks with similar number of hidden neurons.

68



CHAPTER

6
Study on the Interaction
Interface Design

Behavior is the mirror in which everyone shows their image.

– Johann Wolfgang von Goethe

In the field of evolutionary swarm robotics, there has been a lot of atten-
tion on designing the fitness function or the genotype-to-phenotype mapping
(i.e., evolvable decision unit). However, the configuration of the agent regard-
ing its sensory interfaces is mostly left to the näıveté of the experimenter. Yet,
ill-defined configuration—in terms of the selected subset of the sensory-motor
system, or in the pre-processing of the raw sensor data—may be decisive in
determining the failure of the evolutionary process.

In this chapter, we turn towards swarm robotics in order to study the effect
of different robot configurations on the ability to evolve efficient behaviors for
a self-organized robotics system. In particular, we would like to emphasize the
importance of the choice of a good configuration being fundamental as even
small details can lead to large differences in the group behavior. To demon-
strate and analyze this effect, we test different alternatives and measure the
group performance on a bi-objective scale. We find that different configura-
tions not only have a strong effect on performance, but they also correspond to
behaviors with radically different features concerning the organization of the
group. Major content of this chapter has been published and presented at the
IEEE Congress on Evolutionary Computation 2013 [FTE13].

6.1 Introduction

Evolutionary Robotics (ER) can be a powerful method for the automatic syn-
thesis of robotic systems, as demonstrated in the research carried out in the last
two decades [NF00, FK10b, PB07, HDW+13]. However, despite the potential

69



6.1 Introduction 6 Study on the Interaction Interface Design

advantages of such an automatic methodology, the success/failure of an ER
experiment is often left to the expertise/näıveté of the experimenter. Indeed,
it is often the case that many different choices of the experimental setup are
arbitrarily performed, without relying on a well-assessed methodology. The ro-
bustness and flexibility of the evolutionary method sometimes counterbalances
ill-conceived setups, but this cannot be a priori guaranteed. The situation is
possibly worsened for collective and swarm robotics, due to the greater vari-
ability and dynamism characterizing these systems. Trianni and Nolfi [TN11]
recognized the need for an engineering methodology in ER, pointing to four dif-
ferent aspects that must be taken into account when designing an experiment:
the sensory-motor system of the robots, the genotype-to-phenotype mapping,
the fitness function and the ecology. They analyzed the challenges posed by
the application of ER methods to swarm robotics and showed that a small
difference in the communication protocol exploited by the robots had a huge
impact on the scalability of the evolved solutions [TN11].

In Chapter 3, we described an extension of this methodology to self-
organized technical systems pointing out the interface design as an issue that is
often disregarded when building self-organizing systems. In ER, the term robot
configuration is generally used to refer to the choice of the sensory-motor system
of the robots which includes the set of available sensors and actuators that are
used during the experiment, along with the respective pre- and post-processing
mechanisms. In the collective/swarm robotics case, the robot configuration
also includes the communication devices and protocols to allow the exchange
of information between robots. In short, the robot configuration corresponds
to everything that is at the interface between the control system of a robot
and the robot’s environment.

Even though there are attempts to co-evolve the brain and body of a single
robot [LP00], strictly speaking its configuration is typically not modified by an
evolutionary process. Instead, it is usually chosen through intuition or experi-
ence, often relying on the smallest set of sensors and actuators, minimizing pre-
and post-processing in order to limit the intervention of the experimenter and
then letting the evolutionary machinery optimize the system within the given
constraints. We believe that this approach is ill-posed for evolving complex
robotic systems, such as self-organized robotics ones. Indeed, these systems
are very sensitive even to minor changes in their configuration, which might
easily lead to unpredictable or unwanted system behavior [TN11].

Therefore, even if the selection of the robot configuration may seem a trivial
issue, a proper choice can hardly be done without a priori information on the
effects it has on the evolutionary dynamics. In this chapter, we corroborate
this claim with a well-grounded experimental setup, and we point to the need
of methodological tools that support the choice of the best robot configuration.

70



6 Study on the Interaction Interface Design 6.1 Introduction

To demonstrate our claims, we have chosen to evolve a coordinated motion
behavior (“flocking”) for a swarm of autonomous wheeled robots. This is a com-
mon benchmark for swarm robotics, and many different studies have dealt with
it to demonstrate its feasibility in different contexts [HDT02, TcGc08, HLV+11].
This is mainly due to the large body of knowledge available on both the biolog-
ical systems displaying coordinated motion [HW92b, CKJ+02, CCG+10] and
the underlying self-organizing process, which has been extensively discussed
and understood [Rey87, JLM03, VZ12]. On this basis, we can design our
evolutionary experiment to provide the robots with the relevant information
needed to display flocking behavior.

Generally speaking, flocking can be obtained by three basic individual rules:
collision avoidance, flock centering, and velocity matching. Collision avoidance
ensures that the individuals in the group do not get too close to each other,
while flock centering prevents them to get too far as well. Velocity matching
requires the individuals to steer towards the average heading of their neigh-
bors. The first two rules serve to achieve cohesion in the group, while the third
one leads to the alignment of the individuals in a coherent direction, which
is necessary for group motion. Collision avoidance and flock centering can
be easily executed relying on the distance and the bearing of close neighbors.
Instead, velocity matching usually requires the knowledge of their relative head-
ing. Though it is a rather complex task, some studies attempted to extract this
information from simple sensors [HDT02, MSC10]. In order to evolve flocking
in a group of robots, we exploit group cohesion and motion as the objectives to
be maximized by our evolutionary algorithm. We test different robot configu-
rations, which are designed to provide distance, bearing and relative heading
information. Finally, we compare the features of the evolved behaviors for their
capability to display efficient coordinated motion in the group.

In this study, we evolve robotic controllers exploiting a multi-objective evo-
lutionary algorithm [BNE07]. Multi-objective evolution leads to a wide explo-
ration of the search space at the cost of a more complex analysis of the solutions
that constitute the obtained Pareto front. In contrast to optimizing for a sin-
gle aggregated measure, a multi-objective approach explores all the possible
trade-offs between possibly conflicting objectives such as group cohesion and
motion, and therefore the evolutionary process can produce a more diverse set
of candidate solutions. By investigating the evolved behavior at different points
on the Pareto front, we can explore the effect of a given robot configuration at
large, without constraints from an averaging function.

The chapter is structured as follows: Section 6.2 presents a step-by-step
guide on the setup of our evolutionary experiments and the choice of the robot
configurations to test. A first comparison between the different configurations
based on performance only is presented and discussed in Section 6.3, and a

71



6.2 Evolving Flocking Behavior 6 Study on the Interaction Interface Design

deeper analysis of the evolved behavior belonging to the Pareto fronts is pro-
vided in Section 6.4. Section 6.5 summarizes the results and gives some final
remarks.

6.2 Evolving Flocking Behavior

In this section, we describe the design choices made for the evolution of coor-
dinated motion behaviors in a group of robots. Evolutionary experiments are
performed in simulation using ARGoS, a simulator tailored for swarm robotics,
which provides high-speed and accurate simulations [PTO+12]. The simulated
robots model the marXbot platform [BLM+10]. These robots are equipped
with a belt of evenly distributed RGB LEDs that allow signaling with differ-
ent colors, and that can be perceived by the onboard omni-directional camera.
We exploit the marXbot LEDs to define several robot configurations that can
provide the required information for coordinated motion, as described in Sec-
tion 6.2.1. We complete the description about the evolutionary setup presenting
the full sensory-motor configuration of the robots (Section 6.2.2), the controller
and the genotype-to-phenotype mapping (Section 6.2.3), and the evolutionary
algorithm along with the fitness function used (Section 6.2.4).

6.2.1 LED configuration

According to the models of self-organized flocking [Rey87], the relevant infor-
mation needed by an individual to decide its action consists of the distance,
the bearing and the heading of close neighbors. To convey such information we
use the RGB LEDs around the robots, which allow displaying various colored
patterns. In our experiments, the chosen pattern will be always displayed to
allow neighboring robots to detect each other, and possibly to obtain all the in-
formation required for moving in a coordinated way. To comply with our goals,
the configuration of these light sources is kept static during every evolutionary
run.

To investigate the influence of a robot configuration on the evolved behavior,
we test different LED configurations. In total there are 12 LEDs all around
the robot circular body, each configurable to display any color in an 8-bit RGB
spectrum (see the figure in Table 6.2.1). We decided to restrict the number of
colors to red and blue, because each color corresponds to additional inputs to
the robot controllers, as detailed below. In the whole, for each of the 12 LEDs,
we have 3 possible states—red (R), blue (B) and off (0)—that correspond to 312

possible configurations. The situation of the LEDs around the robot’s turret
can be seen on Figure 6.1.

72



6 Study on the Interaction Interface Design 6.2 Evolving Flocking Behavior

Figure 6.1: LED arrangement on the robot’s body,as seen from top

We selected a subset of configurations that intuitively convey information
about the robot heading, which is crucial for effective coordinated motion. We
defined both left-right and front-rear colored patterns, and we vary the number
of LEDs used. Additionally, we also run two control experiments with “naive”
LED configurations: the one with all LEDs off, and the other with all LEDs in
the same state (B), therefore not conveying any heading information. As shown
in Table 6.2.1, in total we have 10 different configurations that can be grouped
in three categories: the naive (1-2), the left-right (3-6) and the front-rear (7-10).
The first configuration is only meant for testing if adding LEDs truly have an
effect on performance, while the second one should determine if adding heading
information is beneficial. The other two categories include setups with different
number of LEDs turned on (respectively 1, 2, 4 and 6 LEDs). For the sake of
simplicity, we considered only symmetric configurations.

6.2.2 Sensory-motor System

Each robot is equipped with a minimal set of sensors and actuators, which is
considered sufficient for displaying a flocking behavior. The selected LEDs in
the robot configuration are always on, and can be perceived by the omnidirec-
tional camera up to the distance of 1 meter. The image is processed to extract
a list of i = 1, . . . , N red/blue color blobs c ∈ {r, b} with their distance ρc,i and
angle θc,i, resulting in a vector vc,i(ρc,i, θc,i) for each detected blob (in polar
coordinates). Additionally, each robot is equipped with 24 infra-red proximity
sensors evenly distributed along the circumference of the robot’s body. The
typical range of these sensors is around 4-5 cm. Each sensor i provides a scalar

73



6.2 Evolving Flocking Behavior 6 Study on the Interaction Interface Design

No. Configuration Description

1 000000000000 All LEDs are turned off

2 BBBBBBBBBBBB All LEDs are turned blue

3 00B00000R000

1-6 LEDs indicating left and right side
4 00BB0000RR00

5 0BBBB00RRRR0

6 BBBBBBRRRRRR

7 R00000B00000

1-6 LEDs indicating front and rear side
8 R0000BB0000R

9 RR00BBBB00RR

10 RRRBBBBBBRRR

Table 6.1: We tested 10 different LED configurations, each defined by a char-
acter array in which the ith element refers to the state of LED i, positions are
as indicated on Figure 6.1

value Pi inversely proportional to the distance of the object. For each sensor,
we build a 2-dimensional vector vp,i(ρi, θi) in polar coordinates, where ρi = Pi
and θi corresponds to the sensor bearing. Measurement uncertainty is modeled
by uniform noise within 5% of the input range.

Directly feeding the values obtained by the sensors would be straightfor-
ward, but would also present a huge search space for our evolutionary approach
(24 proximity values + N colored blob values). Thus, some form of input pre-
processing is necessary. To this purpose, we compute a single resultant vector
for red blobs, for blue blobs and for the proximity sensors:

Vk =
∑
i

vk,i, k = r, b, p. (6.1)

Then, we rescale the vector length to be within the range [0, 1] by exploiting a
sigmoid normalization:

V̂k =
Vk

|Vk|
2

1 + e−β|Vk|
− 1, (6.2)

where β = 2 is a normalization parameter. Finally, we consider the projection
along M = 6 equally distributed axes, by computing the scalar product:

Ik,m = V̂k ·Vm, m = 1, . . . ,M, (6.3)

where Vm is the versor in the direction (2m− 1)π/M .

In this way, we reduce the total number of scalar inputs to a more manage-
able size without significant loss of information. These values are then going

74



6 Study on the Interaction Interface Design 6.2 Evolving Flocking Behavior

to be fed to the robot’s control software.1 On the actuators side, given that
LEDs are always kept in their state, the controller only commands the motors
of the left and right wheels, which can linearly vary in the range [−ωM , ωM ],
where ωM is the maximum angular speed of the wheels (ωM ≈ 4.5s−1).

6.2.3 Genotype-to-phenotype mapping

All robots are completely identical both in body and control software (we use
a homogeneous group). Therefore, we map the genotype to one single control
structure that is cloned and instantiated separately for each robot. We employ a
fully-connected feed-forward neural network without hidden layers. The neural
network has 18 sensory inputs and 2 motor outputs. At each step the sensory
neurons act as simple relays, while the output of the motor neurons is calculated
as follows:

Oj = σ

(∑
i

wijIi + βj

)
, σ(z) =

1

1 + e−z
(6.4)

where Ii is the activation of the ith input unit, βj is the bias term, Oj is the
activation of the jth output unit, wij is the weight of the connection between
the input neuron i and the output neuron j, and σ(z) is the sigmoid function.
The first 6 input neurons receive the input from proximity sensors: Im = Ip,m.
Neurons in the range [7, 12] and [13, 18] receive the data corresponding to the
red and blue vectors: Im+6 = Ir,m and Im+12 = Ib,m. Finally, the output
of the two motor neurons is scaled onto the range [−ωM ,+ωM ] and used to
control the speed of the wheels. The bias terms and the connection weights of
the network are genetically encoded parameters. Therefore, we have a direct
encoding, meaning there exists a bijective function that relates the genotype
to the phenotype.

6.2.4 Evolutionary algorithm and fitness function

In our experiments, we used a simple multi-objective evolutionary algorithm
that operates on a population of 100 randomly generated genotypes. Each
genotype contains the parameters of the control software of each robot as a
vector of floating-point genes varying in the range [−5, 5]. After the evaluation
of the performance of each individual of the population, the new population is
created using a combination of elitism and mutation. In particular, the pop-
ulation is ranked according to the hypervolume metric [BNE07] and the best

1Note that the heading information encoded in the LEDs color pattern (if any) is implicit.
The available information is only given by the color vectors, and no assumption is made on
how the neural controller should make use of it.

75



6.2 Evolving Flocking Behavior 6 Study on the Interaction Interface Design

Figure 6.2: A possible initial setup of the 10 robots.

25 individuals are selected for reproduction: all individuals are retained un-
changed in the next generation, while the rest of the population is generated
by applying a mutation operator to copies of the elite individuals. Mutation is
applied by adding to each gene a random value drawn from a normal distribu-
tion N(0,1), and trimming the value to keep it within the range [−5, 5]. The
algorithm runs for a total of 200 generations.

Due to the fact that random initial conditions have an effect on the immedi-
ate performance of a candidate, each genotype is evaluated in 10 trials and the
average performance over these trials is used to assess its fitness values. Each
trial lasts T = 120 seconds corresponding to 1200 simulation steps. Initially,
all robots are placed randomly within a circle with a diameter of 2 meters. An
example of the initial setup can be seen on Figure 6.2.

Robots are rewarded for displaying coordinated motion, that is, they have
to move as far as possible from the initial position while maintaining group
cohesion. As a consequence, we defined a bi-objective function based on the
following criteria: cohesion and motion. Cohesion is maximized when the
average distance between the robots and the geometric center of the group is
minimized:

C = max

(
0, 1− 1

N

∑
i

|Xi(T )− X̂(T )|
dm

)
, (6.5)

where N is the number of robots, Xi is the position of robot i, X̂ the one of the
group center of mass, and dm is a normalization factor. Motion is computed as
the total distance covered by the geometric center of the group:

M =
|X̂(T )− X̂(0)|

Dm(T )
(6.6)

where Dm(T ) is the maximum distance a single robot can travel in T seconds.

76



6 Study on the Interaction Interface Design 6.3 Evaluating LED configuration

It is important to mention that by measuring the movement of the geomet-
ric center of the group at the end of the simulation we can effectively filter
out solutions that exhibit random oscillations around the center point. This
way cohesive groups with high motion are the best rewarded regardless on the
direction the group decides to take.

6.3 Evaluating LED configuration

We performed 20 independent evolutionary runs for each configuration, each
starting with different randomly generated populations. At the end of each
evolutionary run, a post-evaluation procedure is employed where all candidates
in the last generation are evaluated 300 times. To ensure a fair comparison
between the different configurations, we use the same set of random seeds to
initialize the evolutionary runs and to perform the post-evaluation.

We exploit the Pareto-optimality relations to compare the results obtained
with different configurations. In the simplest case, when one experimental
condition is always dominated by another one (according to the /-relation
[ZTL+03]), we can say that the latter gives a better approximation to the
Pareto-optimal set. If such clear advantage cannot be determined, we can make
use of attainment functions to extract information on the quality of different
configurations [dFFH01]. The attainment function is associated to a given ex-
perimental condition, and it indicates the probability of a given point attaining
(i.e., dominating or being equal) in the objective space. It thus characterizes
statistically the output of a given experimental condition. Since this function
is practically unknown, we approximate it using the simulation results (in par-
ticular, the obtained Pareto fronts of the 20 evolutionary runs we performed for
each setup) obtaining the empirical attainment function (EAF) [LIPS10]. Once
obtained the EAF for each condition, we can compute the difference between
conditions to compare the relative quality of their output (see Figure 6.3 for an
example). On this basis, we can comparatively analyze the effects of different
robot configurations.

6.3.1 Näıve configurations

The näıve control conditions have been designed to make sure that robots can
actually learn to profit from the extra information obtained by the use of LEDs
and camera. Indeed, we could not rule out a priori the possibility that coor-
dinated motion could be effectively performed exploiting the IR sensors only,
or without heading information. Therefore, we initially test the 000000000000

and the BBBBBBBBBBBB configurations, which provide similar information about

77



6.3 Evaluating LED configuration 6 Study on the Interaction Interface Design

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0

.2
0

.4
0

.6
0

.8
1

C
o

h
e

s
io

n

000000000000

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0

.2
0

.4
0

.6
0

.8
1

C
o

h
e

s
io

n

BBBBBBBBBBBB

Figure 6.3: Comparing naive configurations through empirical attainment func-
tions (EAF). Left-side and right-side indicate the differential advantage of the
000000000000 and the BBBBBBBBBBBB configurations, respectively. Gray levels
indicate the magnitude of the difference between the two setups: the darker
the color, the larger the difference. For instance, a black point on the right
indicates that the right-side condition attains that point in at least 80% more
runs. Solid lines indicate the best and the worst surfaces, while the dashed
line indicates the median. In this case, we observe a large advantage for the
BBBBBBBBBBBB configuration.

distance and bearing of close neighbors, the latter featuring a longer range
thanks to the visual information from the camera. Naturally, one expects that
the long-range camera has a beneficial effect on the outcomes of the experi-
ment, but this is not trivial. The reason is that extra sensors require extra
input neurons (with the additional connections) that might enlarge the search
space to a limit where no learning can take place.

As expected, the comparison of the obtained results for the two conditions
shows that robots exploiting long-range visual information significantly perform
better (see Figure 6.3), by systematically attaining higher values in both motion
and cohesion. After investigating the evolved behaviors, we observe that no
true coordinated motion has been achieved, as also suggested by the low motion
performance of the attained points in the objective space. This can be partially
read from concave shape of the Pareto front of BBBBBBBBBBBB and the low
motion values. The increased performance with respect to the 000000000000

configuration can be definitely credited to the increased sensing range of the
camera although it only helps the group to maintain coherence, which is not

78



6 Study on the Interaction Interface Design 6.3 Evaluating LED configuration

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

BBBBBBBBBBBB

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

BBBBBBRRRRRR

Figure 6.4: Comparison between the uniform configuration (BBBBBBBBBBBB)
and a left-right configuration featuring an equivalent number of LEDs on
(BBBBBBRRRRRR)

easily feasible on the basis of IR information only. We therefore obtain a
confirmation that a suitable LED configuration is necessary for coordinated
motion, and also that it must provide some information about the heading of
the robots in order to obtain a good performance.

6.3.2 Left-right configurations

Left-right configurations are probably the most natural way of indicating the
direction of a moving object, as this type of signaling is quite frequent in
technical systems (e.g., visual signs of boats). However, choosing the right
configuration for efficient coordinated motion with the marXbot robots remains
a question. To find out how many LEDs should be turned on, and in what
position, we ran tests with 1, 2, 4 and 6 LEDs, with different color on each side
of the robot. Figure 6.5 shows a comparison of the tested configurations.

First, we compare the results of the uniform configuration (BBBBBBBBBBBB)
with a left-right configuration exploiting the same number of LEDs
(BBBBBBRRRRRR). The heading information provided by the latter can be ac-
tually exploited for better coordinated motion, as the difference between the
EAFs indicates (see Figure 6.4). If we consider cohesion only, the two setups are
equivalent, but the left-right configuration definitely outperforms the uniform
one as soon as motion is taken into account.

The comparison between different left-right configurations is performed for
decreasing number of LEDs. We find that there is a inverse relationship between
the number of LEDs used and the performance (see the second, third and
fourth graph in Figure 6.5). Plus, this advantage appears at every part of

79



6.3 Evaluating LED configuration 6 Study on the Interaction Interface Design

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

BBBBBBRRRRRR

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

0BBBB00RRRR0

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

0BBBB00RRRR0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n
00BB0000RR00

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

00BB0000RR00

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

00B00000R000

Figure 6.5: Comparison among left-right configurations with decreasing number
of LEDs. Setups with less LEDs perform better (see text for details).

the objective space, excluding only a small portion in which solely cohesion is
maximized. We also note that the lower the number of LEDs, the more the
difference fades. A possible explanation for the advantage of less LEDs lies

80



6 Study on the Interaction Interface Design 6.3 Evaluating LED configuration

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

BBBBBBBBBBBB

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RRRBBBBBBRRR

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RRRBBBBBBRRR

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RR00BBBB00RR

Figure 6.6: Comparison among front-rear configurations (see text for details).

in our encoding of the visual data. The encoding presented in Section 6.2.2
might give less distinguishable information when two detected robots are very
close. This is a counter-intuitive result as one would expect that the more
information is available through LED signals, the better the quality of the
coordinated motion behavior. Instead, minimal configurations seem to provide
a selective advantage over the entire objective space. Apart from this, the
results demonstrate that there is a strong influence of the configuration on the
performance of the system.

6.3.3 Front-rear configurations

It is also possible to deduct the heading information from front-rear markers,
as it is done for cars. For example, most road vehicles have white headlights
and red taillights to indicate the direction of their movement. Indeed, evolved
strategies may exploit front-rear markers to obtain a coherent orientation of the

81



6.3 Evaluating LED configuration 6 Study on the Interaction Interface Design

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RR00BBBB00RR

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

R0000BB0000R

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

R0000BB0000R

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n
R00000B00000

Figure 6.7: Comparison among front-rear configurations with decreasing num-
ber of LEDs (see text for details).

group, which is the basics for coordinated motion. Therefore, we performed
the same simulations as presented above with different number of LEDs used
to signal the front and the rear of a robot. The comparison among the different
configurations can be seen in Figure 6.6 and 6.7.

Also in this case, the comparison with the uniform configuration shows that
front-rear markers can be actually exploited for coordinated motion. When
comparing among different front-rear configurations, we note that it is not
possible to draw a strong order of performance among them. While it is clear
that the setup with 6 LEDs is strictly dominated by configurations with less
LEDs, we note no clear difference between configuration with 4 and 2 LEDs
and a differential advantage in separate zones of the objective space between
configuration with 2 and 1 LEDs. Therefore, differently from the left-right
configurations, front-rear markers appears to be exploited in a similar way
despite their number.

82



6 Study on the Interaction Interface Design 6.4 Classification of solutions

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

BBBBBBRRRRRR

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RRRBBBBBBRRR

Figure 6.8: Comparison of the left-right and front-rear configurations (see text
for details).

6.3.4 Comparison between different configuration cate-
gories

We finally propose a comparison between left-right and front-rear configura-
tions, performed among setups featuring the same number of used LEDs (e.g.,
00BB0000RR00 vs. R0000BB0000R). In the case with 6 LEDs, the front-rear con-
figuration demonstrates better performance in covering the objective space (see
Figure 6.8). As we decrease the number of used LEDs, the situation changes in
favor of the left-right configuration, which starts to dominate in the top part
of the objective space, where more and more solutions featuring high cohesion
and good motion are found. As shown by the various graphs in Figure 6.9, the
front-rear configurations keep an advantage in the areas of the objective space
characterized by high motion but low cohesion. Thus, without further analysis
it is impossible to determine the best configuration.

6.4 Classification of the obtained solutions

Despite the usage of relatively simple configurations, we were unable to con-
clusively determine the best setup. Indeed, the average values of motion and
cohesion alone do not indicate what kind of behavior the group is displaying.
For this reason, it is necessary to observe the evolved behaviors and identify
their characteristics in relationship to the area occupied in the objective space.
As discussed, certain configurations yield better performance in different parts
of the Pareto front. However, it is very likely that not every non-dominated so-
lution corresponds to flocking. The idea to solve the comparison problem would

83



6.4 Classification of solutions 6 Study on the Interaction Interface Design

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

0BBBB00RRRR0

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

RR00BBBB00RR

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

00BB0000RR00

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n
R0000BB0000R

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

00B00000R000

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0 0.1 0.3 0.5 0.7 0.9 1

Motion

0
0
.2

0
.4

0
.6

0
.8

1

C
o
h
e
s
io

n

R00000B00000

Figure 6.9: Comparison of the left-right and front-rear configurations with
decreasing number of LEDs (see text for details).

be to find clusters of basic group behaviors on the motion-cohesion diagram in
order to find where most flocking solutions exits. For instance, solutions with
high cohesion and low motion, despite belonging to the Pareto front, do not

84



6 Study on the Interaction Interface Design 6.4 Classification of solutions

correspond to coordinated motion. Similarly, high motion and low cohesion
correspond to the group splitting in various subgroups. By thorough analysis
of the evolved behaviors on the entire Pareto front, we observed the following
prototypes of group motion2:

Stationary: Robots stay close to each other, showing minimal or no group
motion.

Disperse: Robots spread around with almost no cohesion.

Wavefront: Robots move together forming a single-width arc.

Train: Robots align and follow each other one by one like wagons of a train.

Flocking: Robots show a healthy mix of cohesion and motion by displaying
true flocking.

To objectively classify each solution into one of the above listed behaviors
we defined a set of suitable metrics and a classification procedure. Besides
motion and cohesion measures, we compute the following metrics at the end of
each trial.

• The number of connected components K in a graph where each node
corresponds to a position of a robot and an edge exists if and only if the
distance between the robots is less than the maximum visual range. This
measure serves to understand if the group splits in sub-groups moving in
different directions.

• The angle Θ between the average direction of motion of the group and
the main axis of the group given by the position of the two robots that
are farthest away from each other. This allows to distinguish between
trains and wavefronts.

We performed 50 trials for every non-dominated solution of each configura-
tion to obtain a reliable classification, and on the basis of this sample, we ran
the classification procedure shown in algorithm 2. We first classify as “disperse”
those behaviors in which the group splits into two or more smaller groups more
than 25% of the time. This is measured as Q3(K) > 1, where Q3(K) is the
third quartile of the number of connected components.3 Then, we identify the
solutions belonging to the class “stationary”, which exhibit very low motion

2A video of the observed behaviors is available at http://www.youtube.com/watch?v=

DMTajtJasTs
3The rest of the classification is performed discarding those trials in which the group splits

(which are anyway a minority), in order to avoid incorrect classifications.

85



6.4 Classification of solutions 6 Study on the Interaction Interface Design

if Q3(K) > 1 then
return Disperse

else if Q3(M) ≤ Da then
return Aggregation

else if Q1(C) > Dc then
return Flocking

else if Q2(Θ) ≤ π
4

then
return Train

else
return Wavefront

end if

Algorithm 2: Classification of different behaviors (see text for details).

Configuration
Stationary Disperse Train Wavefront Flocking

# % # % # % # % # %

3 00B00000R000 128 47,8% 45 16,8% 0 0,0% 1 0,4% 94 35,1%

4 00BB0000RR00 135 50,4% 50 18,7% 0 0,0% 4 1,5% 64 23,9%

5 0BBBB00RRRR0 155 57,8% 70 26,1% 0 0,0% 11 4,1% 41 15,3%

6 BBBBBBRRRRRR 211 78.7% 116 43,3% 0 0,0% 5 1,9% 11 4,1%

7 R00000B00000 200 74,6% 60 22,4% 41 15,3% 0 0,0% 32 11,9%

8 R0000BB0000R 180 67,2% 44 16,4% 90 33,6% 0 0,0% 20 7,5%

9 RR00BBBB00RR 168 62,7% 50 18,7% 122 45,5% 0 0,0% 15 5,6%

10 RRRBBBBBBRRR 185 69,0% 85 31,7% 82 30,6% 0 0,0% 8 3,0%

Table 6.2: Detailed classification results for each configuration.

values. We classify as “stationary” those behaviors that have Q3(M) ≤ Da,
where Q3(M) is the first quartile of the motion samples and Da = 0.25 is an
empirically selected threshold below which no significant motion of the group
is observable. By using the third quartile we encompass in the class those
behaviors that aggregate at least in 75% of the trials.

At this point, we have removed all cases that do not present a good coordi-
nated motion behavior. We then classify as “flocking” those behaviors that do
not present an elongated shape, determined as Q1(C) > Dc, where Q1(C) is the
first quartile of the cohesion samples and Dc = 0.8 is an empirically determined
threshold. This class encompasses behaviors in which the group presents high
values of cohesion in at least 75% of the trials. Finally, we distinguish between
“train” and “wavefront” on the basis of the angle Θ, which indicates whether
the main axis of the group is close to the average direction of motion of the
group (train) or orthogonal to it (wavefront). We therefore look at the median
value Q2(Θ) and classify the behavior as “train” in case it is lower than π/4,
and as “wavefront” otherwise.

86



6 Study on the Interaction Interface Design 6.4 Classification of solutions

Figure 6.10: Classification of left-right (left) and front-rear (right) configura-
tions.

Table 6.4 shows the behavior classification of every setup. We notice that
left-right configurations do not produce “trains”, and conversely front-rear con-
figurations do not produce “wavefronts”. Therefore, the LEDs configuration
strongly determines the quality of behaviors that can be evolved. Moreover,
we also notice that left-right configurations present an higher percentage of
“flocking” behaviors, the lower the number of LEDs, the higher the probability
to observe flocking. Therefore, the 00B00000R000 configuration seems to be
the best one if flocking is the desired outcome.

Finally, we mapped the classification of behaviors over the corresponding
points in the objective space, and we aggregate all solutions respectively for
left-right and front-rear configurations (see Figure 6.10). It is possible to ob-
serve that different classes are rather separated on the objective space, with
flocking behaviors occupying the area with high cohesion and variable motion.
We also observe that “train” and “wavefronts” are specialized solutions, and
that they are less clustered in the objective space, indicating a wide range of
possibilities of displaying these behaviors in the different configurations. If we
compare Figure 6.10 with Figure 6.9, we can understand how the ability to pro-
duce more flocking behaviors gives a performance advantage to the left-right
configuration, while the front-rear configurations dominate mainly thanks to
behavior in the “train” or “disperse” categories, which correspond to larger
motion values. Again, from this analysis the left-right configuration results in
better performance.

87



6.5 Summary 6 Study on the Interaction Interface Design

6.5 Summary

We have shown the importance of the robot configuration on the ability to
evolve efficient coordinated motion behaviors in a swarm of robots. We evolved
artificial neural networks controlling these robots to exhibit flocking behavior.
The robots had different fixed LED configurations in order to test the effect
of various setups. In particular, we compared 2-color front-rear and left-right
setups that are seemingly identical in terms of information content. Yet, the
evolved swarm behavior was qualitatively different, i.e., we obtained different
variations of line following instead of flocking behavior. Thus, our results indi-
cate that the selection of the robot configuration can determine the success or
the failure of the evolutionary experiment. This also supports the need for a
well-assessed methodology to guide the experimenter in the choice of the robot
configuration.

88



CHAPTER

7
Self-organized Behavior
in Adversarial Environ-
ment

Soccer is simple, but it is difficult to play simple.

– Johan Cruijff

Nature provides many examples of self-organized societies, such as foraging
ants, or bird flocks. This has inspired many researchers to replicate similar
behaviors with autonomous robots using different machine learning techniques.
However, these experiments mostly assume a fixed environment to which the
system has to adapt to, which limits the solutions to a particular experimental
setting. Thus, an interesting question is if evolution is capable of finding a set
of local rules that are robust enough to cope with an ever-changing, adversarial
environment.

In this chapter we will study how a self-organizing system can be evolved
that is exposed to an adversarial environment. In particular, we evolve a com-
peting population of candidate solutions based on artificial neural networks
that play a simplified version of the popular soccer game among each other.
Unlike in real soccer games with attackers, defenders, and midfielders, in our
implementation of the game no dedicated roles are assigned a prior. Thus
the team has to self-organize and dynamically assign these roles in order to
be successful and achieve victory. We analyze the evolved exhibited gameplay
to see if this hypothesis is correct. Furthermore the effects of different neu-
ral network structures and interfaces between simulation and controllers are
also investigated to increase the understanding of the required complexity of
the underlying controllers for this type of emergent behavior, and to identify
possible design issues.

While it is very hard to quantitatively assess the performance of a soccer
team, our results indicated, that the robots managed to exhibit a high level of
team play and succeeded in the game of soccer by dynamically assigning roles

89



7.1 Introduction 7 SO Behavior in Adversarial Environment

to members of the team. We also find that the design of the interface between
neural network and sensors/actuators plays a major role on the performance
of the evolved solutions. In our experiments, a simple Cartesian representation
of the sensors and the intended robot movements provided the lowest “cogni-
tive complexity” for the artificial neural networks. This experiment and the
corresponding results have been published at the Journal of Robotics [FE10].

7.1 Introduction

The concept of systems consisting of multiple autonomous mobile robots is
attractive for several reasons [UFK97]: Multiple cooperative robots might be
able to achieve a task with better performance or with lower cost. Moreover,
loosely coupled distributed systems tend to be more robust, and more flexible
than a single, more powerful robot performing the same task. A benefit from
the collaborative interaction of mobile robots can be an emergent service, i.e., a
progressive result that is more than the sum of the individual efforts [Joh02].
A swarm of robots can thus build a self-organizing system [FN00].

The continuous technical development in robotics in the last decades has
provided us with the hardware for swarms of small cheap autonomous de-
vices [Nov03, BP07, RSZF07]. However, designing the behavior and inter-
actions between the robots remains a very complex task. Using a standard
top-down design approach with fixed task decompositions and allocation typi-
cally leads to systems working only for a small set of parameters. On the other
hand, effects like changing environments or breakdowns and faults of hardware
require a robust and flexible solution that provides a useful service for many
possible system states.

An alternative to the classical design approach is to organize the robots
as a self-organizing system performing the intended task. Thus, the robots
achieve a global system behavior via simple local interactions without central-
ized control [EdM08]. As shown by many examples in nature, simple rules for
the interactions can emerge to quite complex behavior while being scalable and
robust against disturbances and failures. This would allow for simple control
systems like for example having a small ANN on the particular robots.

There are many examples of evolving swarms of autonomous robots (see
Chapter 6.1), however most of these experiments assume a fixed environment.
As explained in Chapter 3, a disadvantage of the evolutionary approach is that
the solutions are limited to the conditions taken into account when the exper-
iment was designed. Therefore, if the environment changes in an unexpected
way, the whole evolutionary process has to be started over. A possible solution
would be to coevolve the environment as well, i.e., let evolution find challenging

90



7 SO Behavior in Adversarial Environment 7.2 Experimental Setup

experimental setups in order to overcome the limitations of a human designer.
The advantages of coevolution in evolutionary robotics have been discussed
by Nolfi and Floreano et al. [NF98], where they coevolved predator and prey
robots. However, in their study, dedicated roles are already assumed, meaning
the personal goals of each individual are fixed, thus the effects of the environ-
ment are limited. This makes their results difficult to be extended to a situation
considering self-organized teams of identical robots.

An idea would be to model the adversarial environment as a competing
team with identical conditions racing for the same resources. Ideally, this
would produce solutions that can adapt to conditions not considered by the
experimenter, thus applicable to a wider range of environmental effects.

In this chapter we analyze how this goal can be achieved by evolving a
competing population of ANN-based control systems for homogeneous teams
of self-organizing robots. The robots are evolved to play a simplified version
of the popular soccer game. In order to preserve the competitiveness of the
game, no absolute fitness metric is used. Instead, selection is based on different
tournament ranking algorithms. In our analysis we tackle the effect of different
neural controller types and their interface to the robot and elaborate on the
particular influence of fitness function parameters on the evolved behavior.

The chapter is structured as follows: The next section describes the details
of the evolutionary experiment based on robot soccer, while Section 7.3 shows
and explains the acquired results. This chapter is concluded in Section 7.4.

7.2 Experimental Setup

As a case study, we have defined the problem of teaching soccer to a team
of autonomous robots in a 2D environment similar to the official RoboCup
Simulation League. This problem provides a rich testbed domain for the study
of control, coordination and cooperation issues described in [Kum03, BR00].
We used the Simulated Robot Soccer component of FREVO, which is based on
the official RoboCup soccer simulator1 with the same physics engine. However,
in contrast to the official one, this implementation does not include the roles
of a referee or goalkeeper and there is a simulated boundary around the field,
which avoids situations where the ball goes out of bounds. A further change
with respect to our approach is that our simulation runs as a discrete event
simulation with maximum computation speed, or in real-time mode to allow
watching a game. This greatly reduces the actual time for performing the
evolution.

1http://sourceforge.net/projects/sserver

91



7.2 Experimental Setup 7 SO Behavior in Adversarial Environment

Population size 100

Number of generations 500

Percentage of elite selection 15

Percentage of mutations 40

Percentage of crossover 30

Percentage of randomly created offsprings 5

Table 7.1: Parameters of the evolutionary algorithms

A simulation run consists of initially placing a configurable number of soccer
players (typically teams of 11 players each) on the respective side of the field
and to simulate a game where each player can accelerate with a desired strength
in a desired direction and, if being close enough to the ball, can kick the ball
with the desired strength towards a given direction. One game lasts for 300
steps corresponding to 60 real-time seconds. This is a sufficient amount of time
for gameplay and to score goals. Goals can be scored if the ball ends up in
the opponent’s goal area, after which the position of all players and the ball
is reset. However, we introduced a border around the field to prevent the ball
from leaving the designated area. Furthermore, we removed the offside rule for
the sake of simplicity.

7.2.1 Evolutionary Algorithm

We used the NNGA evolutionary algorithm component of FREVO to evolve
the controllers of the soccer players. The implementation of the optimization
method is based on the one presented by Elmenreich and Klingler in [EK07].
The size of the population was set to 100 and the length of the simulation was
fixed at 500 generations. The parameters of the genetic operators can be seen
in Table 7.1.

7.2.2 Candidate Representations

The candidates for the evolutionary algorithm were realized as artificial neural
networks. Training has been applied to optimize the weights and biases of the
neural network. We tested two different candidate representations in our case
study, namely a fully-connected and a feedforward ANN, both of which are
standard components of FREVO.

The fully-connected network is a time-discrete, recurrent artificial neural
network. Each neuron is connected to every other neuron and itself via several
input connectors. Each connection is assigned a weight that is a floating point

92



7 SO Behavior in Adversarial Environment 7.2 Experimental Setup

Figure 7.1: A possible wiring of the neural network showing the groups of
inputs, outputs and hidden neurons. Connections with stronger weight are
indicated with bold lines while ones with lower weight are colored with grey.

value and each neuron is assigned a bias. The problem requires 16 inputs
and 4 outputs. Additional “hidden” neurons are added in order to increase
the expressiveness and the number of representable states. The feedforward
network only provides forward connections from the input nodes (the input
layer) to the nodes in the hidden layer and forward connections from the hidden
layer to the output layer.

In most cases, feedforward networks are employed for ANN applications,
since they can be programmed via back propagation, by using a set of input-
output pairs. However, our evolutionary setup provides only belated rewards,
that is the feedback after a simulation involving many different actions of the
ANN controller. Thus, it is not possible to know the right set of outputs for
each upcoming set of inputs of a network during simulation.

The modular interface of FREVO allows an easy change between both
representations. The implementation of both types is almost identical, the
only difference is that the feedforward network only features a subset of
connections per neuron. At each step, each neuron i builds the sum over its
bias bi and its incoming connection weights wji multiplied by the current
outputs of the neurons j = 1, 2, ..., n feeding the connections. Weights can be
any real number, thus have either an excitatory or inhibitory effect. The out-
put of the neuron for step k+1 is calculated by applying a activation function F :

93



7.2 Experimental Setup 7 SO Behavior in Adversarial Environment

oi(k + 1) = F (
n∑
j=0

wjioj(k) + bi)

where F is a simple linear threshold function

F (x) =


0.0 if x ≤ 0.0

x if 0.0 < x < 1.0

1.0 if x ≥ 1.0

The linear threshold function has been chosen over a sigmoid one to improve
computation speed and our tests did not show any significant difference in terms
of performance. As described below in detail, the output of the output neurons
is further scaled to match the input range of the actuators.

7.2.3 I/O interface between Simulation and Controllers

In the case study, the information passed to the simulation is predefined; it
consists of the strength and direction for the players’ moves and, in case a
player can kick the ball, the strength and direction of the kick. The information
provided by the simulation is also determined; it consists of the position of
the ball, a list of visible teammates, a list of visible opponent players, and
information about the distance to the field’s (upper, lower, left, right) border.
The visibility model was adopted from the official Robocup soccer simulator.
The position of the goal is given indirectly by combining the distance to the
borders with the knowledge that the goal resides in the middle of the side-
borders.

However, there are different ways to pass this information into the con-
troller. In general, the ANN will have a set of so-called input neurons, which
activate their output according to a given input from external sources. Re-
spectively, a number of output neurons is used to export information from the
network. Finally, some unspecified or hidden neurons are added. All neurons
are interconnected by directed weights, which are evolved in the framework
(See Figure 7.1).

Since the number of neurons defines the search space, the number of neu-
rons should not become too large. On the other hand, input neurons should
be defined in a way that their result is easily interpretable by the ANN. For
example in [EK07], a distance sensor was modeled that is periodically changing
its orientation via several input neurons, each representing the input for a par-
ticular orientation. In the current example, the inputs are arranged in groups
of four neurons. Each group is responsible for communicating the detection of

94



7 SO Behavior in Adversarial Environment 7.2 Experimental Setup

Figure 7.2: A group of input neurons detecting the ball

a particular object class (ball, teammate, opponent, border) and consists of a
north, south, east and west neuron. This notation of directions translates to
up, down, right, left for players of the team defending on the left side of the
field and to down, up, left, right for the team defending on the right side of
the field. This mirroring is necessary so that teams only have to learn playing
on one side, thus the same behavior can be executed regardless of the starting
conditions.

If the nearest object of that class is in a particular quadrant, lets say north-
west, then the north neuron and the west neuron are activated inversely propor-
tionally to the components of the vector to the object. So, if in our example the
ball is towards the north-north-west, the north neuron gets a high activation
and the west neuron a moderate one (See Figure 7.2).

For the output neurons, we tested two setups: in the first setup, the outputs
are scaled to [−100%, 100%] and [−180,+180], respectively and interpreted as
polar coordinates for the move and kick vectors. The second setup interprets
the neurons as being the x and y components of a vector in Cartesian coordi-
nates. In general, both approaches are expected to work, since they transport
exactly the same information and the ANN will be evolved to adjust to the
given representation.

7.2.4 Fitness Function

Typically, when the task is more complex the definition of the fitness function
is not trivial. In the case of a soccer game the primary aim is to train teams
scoring the most goals during the given time interval. However, this measure
is far too large scale to be used for teams, initially composed of random ANN
controllers, to expect improvement over generations just by rewarding them
by the final number of goals they score in each game. The idea here is to
decompose the overall goal into smaller achievements (so-called guidelines) and

95



7.2 Experimental Setup 7 SO Behavior in Adversarial Environment

Figure 7.3: Weighted fitness

let the teams fulfill them one after the other. This method tries to ensure a
smooth learning process assuming some preliminary knowledge or ideas about
the solution. The guidelines are assigned a weight to setup a hierarchical order.
It means a task with smaller weight is less important, but will most likely be
accomplished before another tasks with higher value. This is because the second
one is too complex to be achieved without learning the first one. Figure 7.3
shows the applied tasks in their respective order in our simulation.

At the beginning of the training we wanted the teams to learn that a good
distribution on the field might lead to good overall play. Therefore, we intro-
duced the first guideline (field distribution). It was implemented by defining
64 evenly distributed checkpoints on the field and counting the number of con-
trolled points every 5 seconds for both teams. A point is controlled by a team
if it has the nearest player to this point. The accumulated points are added
to the final fitness value. The second guideline was an advice for the teams
to move their players closer to the ball. The distance of the nearest player for
both teams to the ball is measured and compared every 4 seconds. The team
having a player closer to the ball earns one point. At the end of the game this
point is weighted and also added to the final fitness. The number of kicks is also
counted with a weight however only the first 10 kicks are taken into account
to create an upper bound and to prevent dead team strategies where they only
pass the ball back and forth. Concerning the kicking direction the ball distance
to the opponent’s goal is also measured and calculated every 2 game seconds
in the same manner as guideline two. The highest weight is assigned to the
number of scores, being more significant than the other fitness components.
Therefore, we define the fitness function as the following equation:

F = wppp + wbdpbd + (wkpk − wfkpfk) + wbgpbg + wsps

where W and P stand for the weights and the points respectively. Table 7.2
explains the corresponding indexes and values.

96



7 SO Behavior in Adversarial Environment 7.2 Experimental Setup

i Pi Wi

p field distribution 100

bd distance to the ball 103

k number of kicks 2 · 104

fk number of false kicks (ball is kicked out of bounds) 104

bg ball distance to the opponent’s goal 105

s number of scores 4 · 106

Table 7.2: Parameters of the fitness function

7.2.5 Optimized Tournament Ranking

Evolving competitive team behavior is a good example where one cannot assign
a simple absolute fitness value. To rank the teams one solution is to play a
tournament among the candidates in each generation (assuming one popula-
tion with n candidates). A full tournament would mean n(n − 1)/2 number
of pairings when n is the number of entities in the population. In case a sim-
ulation run takes too much time or a high number of generations is needed,
this approach can be very ineffective. For example, a population of 50 indi-
viduals would require 1225 runs for each generation. The proposed solution
tries to minimize the number of necessary pairing using Swiss System style
tournament [fid88]. It reduces the required number to dlog2 nen2 which is in
the mentioned case only 150 games, instead of 1225 (see Figure 7.4). Inspired
by the official FIDE2 rules for chess tournaments we established the following
system:

In each game the winner gets two points, loser gets zero, in case of a draw
both get one point. After the first round players are placed in groups according
to their score (winners in group ”2”, those who drew in group ”1”, and losers in
group ”0”). The aim is to ensure that players with the same score play against
each other. Since the number of perfect scores is cut in half each round, it
does not take long until there is only one player left with a perfect score.
The actual number of rounds needed is log2 n to be able to handle n teams.
In chess tournaments there are usually many draws, so more players can be
handled (a 5-round event can usually determine a clear winner for a section of
at least 40 players, possibly more), although in our simulation a draw is very
unlikely. To avoid early games between elite selected entities, the first round is
not randomized but cut into two halves where the first half, consisting of teams
which have performed well so far, is playing against the second half.

The drawback of the Swiss system is that it is only designed to determine
a clear winner in just a few rounds. Regarding other players, we have little

2http://www.fide.com

97



7.3 Simulation Results 7 SO Behavior in Adversarial Environment

Figure 7.4: Total number of games in full tournament and Swiss System

information about their correct ranking. For example, there could be many
players with 3-2 scores and it is hard to say which player is better than the
other, or whether a player with 3.5 points is better than a player with 3 points.
To help determine the order of finish, a tiebreak method has been implemented.
In order to decide on the ranking for players having the same score, we used
a method developed by Bruno Buchholz [HW92a]. There, the score of the
players’ opponents is summed up thus favoring those who have confronted
better opponents. In case it is still undecided the sum is extended by the
points of those opponents who have lost against the player. This uncertainty in
the ranking could cause problems in the evolutionary algorithm when selecting
entities for survival to the next generation. In our case elite selection was 15%
while the Swiss System ensures only the first and last position to be ranked
correctly, thus the position of all other players carries also some obscurity. After
observing this effect in our simulation we came to the conclusion that having
a somewhat imprecise selection among the top players slows down the process
just a little or not at all.

To select entities for survival we used a roulette wheel selection where the
probability being selected is directly proportional to the fitness, in our case
the ranking of the Swiss System. Since this approach already carries some
randomization some more uncertainty did not make a crucial impact.

7.3 Simulation Results

We ran several simulations evolving soccer teams. In particular, we varied

• the type of representation (fully connected or feedforward ANN),

• the number of hidden nodes (2, 4, or 6),

• the type of the interface between simulation and controllers.

98



7 SO Behavior in Adversarial Environment 7.3 Simulation Results

Figure 7.5: Tournament results of ANN with different I/O interfaces

Figure 7.6: Box-and-whisker diagram of the repeated evaluation of different
I/O models and different number of hidden neurons for feedforward and fully
connected ANNs

We evolved each setting up to 500 generations. Unfortunately, there is
no absolute fitness value for depicting the quality of an evolved result. Only
relative comparisons of teams by matching them in a simulation are possible.
For our evaluation, we picked the best result of every 20th generation. These
“champions” have than been matched in a round-robin tournament against
each other in order to determine if there is a constant evolution towards better
gameplay and if one setting is performing better than the other.

99



7.3 Simulation Results 7 SO Behavior in Adversarial Environment

Figure 7.7: Tournament results of fully connected vs. feedforward ANN with
Cartesian interface

We found out that the design of the interface between simulation and con-
trollers is of major importance to the success of the evolutionary algorithm.
The results showed that the selection of the interface between simulation and
controllers has a significant influence on the speed of convergence and quality
of the evolved solution. When the output neurons were interpreted as po-
lar coordinates, the ANN controller needed to learn the coherent semantics
of polar coordinates, and, probably, learn to emulate trigonometric functions.
Figure 7.5 visualizes this observation for both, feedforward and fully connected
ANN. The figure depicts the results of a tournament of the above mentioned
champions for various settings. Most curves are increasing over generations
which depicts that the gameplay of the teams has been improved by the evo-
lutionary algorithm.

As can be seen in the graphs, the systems using polar coordinates, even
after several hundreds generations, are ranked lower than almost every other
systems using Cartesian coordinates. So, in this case, yielding output in polar
coordinates posed a higher “cognitive complexity” for the system than yield-
ing output in Cartesian coordinates. Figure 7.6 shows a boxplot covering 20
different iterations of the evolutionary algorithms and also confirms that the
Cartesian coordinate I/O model is significantly superior to the polar coordi-
nate model. This, however, may be specific for the chosen problem and may
be different for other problems.

There was no significant effect of the number of hidden neurons on the
overall performance or speed of convergence. This could be explained by the
fact that a less complex ANN is already sufficient to learn the local interactions
producing a competitive behavior.

100



7 SO Behavior in Adversarial Environment 7.3 Simulation Results

Figure 7.8: Box-and-whisker diagram of the repeated evaluation of fully con-
nected vs. feedforward ANN with Cartesian interface

Figure 7.7 compares the different versions using polar coordinates with each
other and depicts that the fully connected ANN have evolved faster and to a
better gameplay than the feedforward networks. The box plot diagram in
Figure 7.8 gives a statistic over 20 different runs of the evolutionary algorithm.
While it confirms that all fully-connected ANNs are typically better than the
feedforward ANNs with 2 hidden neurons, it also shows that a feedforward
ANN with enough neurons (that is 6 in that case) is in many iterations able to
compensate for the lower number of connections.

Thus, a fully connected network with 6 hidden neurons and an I/O interface
based on Cartesian coordinates evolved 400 generations or more performed best
according to the ability to win over others. Unfortunately, the quality and
elegance of the result cannot be measured in this terms. By watching several
games we observed the following behavior3:

• only the player nearest to the ball runs directly to the ball

• other players (of the same team) in the vicinity of the ball also follow
the ball, but they do usually not converge to the same spot; instead they
keep spread out

• the player at the ball kicks it to a direction bringing it nearer to the
opponent’s goal

• players far from the ball spread out and build a defense mesh in front of
their own goal

• players sometimes tend to stick to opponent players (man-marking)

3A video of the evolution of the gameplay can be found at http://mobile.uni-klu.ac.
at/demesos

101



7.4 Summary 7 SO Behavior in Adversarial Environment

Considering the relatively small size and complexity of the neural network
controllers, the versatility of the emerging strategy is impressive. When both
teams are well evolved, the ball is passed over several stations until the ball
possession changes. Goals are scored roughly every few hundred simulation
steps.

7.4 Summary

In this chapter, we studied how a self-organizing system can be evolved that
is exposed to an adversarial environment that is coevolved. In particular, we
have described an experiment where we evolved a competing population of
artificial neural network controllers for a homogeneous team of cooperative
robots. Given an overall goal function, we evolve the particular weights and
biases of the neural network controllers using an evolutionary algorithm. Thus,
the neural network learns to interpret the sensory inputs, to control the robots
actuators and to behave according to a team strategy that is beneficial for the
given task.

In our study, we have evolved control behavior for simulated soccer robots
to cooperatively win soccer games. After a few hundred generations, the players
of a team adopt a useful behavior. In contrast to related work, the players were
not evolved to a priori defined roles, like defender, midfielder or striker, but all
have an instance of the same neural network controller. Still, during a game,
different behavior of the players emerge based on their situations. Thus, similar
to biological systems, the entities specify to different roles in a self-organizing
way. Since the entities are identical, the system has a high robustness against
failure of some of the entities.

We have examined the influence of various factors to the results. The most
important factor was the design of the interface between neural network and
sensors/actuators. Although an ANN could theoretically adopt to different rep-
resentations of sensor/actuator interfaces, it was necessary to find an interface
with low “cognitive complexity” for the ANN, which was in our case a simple
Cartesian representation of the sensors and intended robot movements. Fur-
thermore, we analyzed the influence of using different sizes and types of ANN.
While the number of neurons had the smallest effect on the performance, the
type of representation favored the fully-connected network type.

102



CHAPTER

8
Conclusions

Increasing the level of self-organization within our networked technical systems
presents the possibility to cope with the rising complexity system designers
have to face. Advantages like robustness against single point failure, scalability,
and adaptability are all desired when dealing with systems composed of a huge
number of interdependent, networked components. The problem with designing
self-organizing systems lies in the fact, that the phenomena of self-organization
is essentially a bottom-up process, thus traditional top-down design approaches
usually cannot be applied.

In this thesis we investigated how evolutionary algorithms can be used to
design self-organizing technical systems, i.e., to find the appropriate micro-
level rules of a system that drive it into the desired emergent behavior. Our
survey of existing literature has revealed that despite the many reports on
applying evolutionary approaches to generate self-organizing systems, there is
a need for a generic description of the underlying system engineering process.
In Chapter 3 we discussed the basic building blocks for applying evolutionary
algorithms to the design of self-organizing systems for technical applications
and proposed a methodology built on top of this that can potentially guide
the system designer when engineering self-organizing technical systems. In
this methodology we highlighted several decision points in each building block
where careful consideration from the system designer is needed.

FREVO, a novel evolutionary software framework was also introduced with
the aim to help system designers dealing with self-organizing systems. FREVO
is a modular piece of software offering various components required to fully
evolve and evaluate a self-organizing system. This includes popular optimiza-
tion algorithms, genotype-to-phenotype mappings, and benchmark problems.
This framework fully supports the presented design methodology.

Three case studies from the fields of cellular automata and swarm robotics
have been described as examples for applying self-organization in a networked

103



8.1 Contributions 8 Conclusions

technical system. Furthermore, we investigated several of the mentioned design
decision points in order to increase the understanding of their effects on the
evolved self-organizing system. In Chapter 5 a cellular automata (CA) model
was described where each cell was controlled by an artificial neural network.
These networks were evolved so that the cells display a previously defined
reference pattern. In this study the relation between problem complexity and
controller complexity has been analyzed. We found that CAs displaying simple
structures can be evolved, but the performance rapidly decreases with patterns
of higher complexity, even when using more complex neural network structures.
Thus, the applied evolutionary algorithm could not cope with the large search
space presented by the problem.

Swarm robotics is a widely used application field for self-organization. In
Chapter 6 we investigated how different interaction interfaces effect the quality
of the evolved behavior. We trained groups of robots to display flocking behav-
ior defined by a multi-objective fitness function. Our results showed completely
different evolved group behaviors even when using seemingly identical configu-
rations. This points towards the need of automated interface configurations.

Self-organizing robot soccer teams were evolved in Chapter 7. Though the
team is composed of identical robots, the evolved teams learned to dynamically
assign roles in order to achieve victory. This study also shows how competing
self-organizing systems can be successfully coevolved in order to continuously
present challenging environments they need to adapt to. Furthermore, com-
parisons of different neural network controller structures indicated that the size
of the networks have little impact on the performance. Thus, simple controller
representations are enough to obtain complex adaptive self-organizing team
behavior.

8.1 Contributions

A major contribution of this work is a proposal of such a methodology, which
analyzes several vital cornerstones of the evolutionary design of self-organizing
technical systems. It provides a set of guidelines for engineers and scholars
working with such systems in order to help to identify and avoid possible bad
design decisions leading to sub-optimal or non-working solutions. We address
the major decision points by decomposing the overall effort into the following
parts: the simulation model, the evolvable decision unit, the interaction inter-
face, the search algorithm, and the objective function. The simulation model
addresses issues concerning the relation between the system and its environ-
ment, the heterogeneity of the system, and the applied modelling technique.
The evolvable decision unit is a representation of the components’ controllers

104



8 Conclusions 8.1 Contributions

that essentially forms the underlying logic, or the set of microscopic (local)
rules in a self-organizing system. The interaction interface describes how this
decision unit interacts with other components and its environment. The task of
the search algorithm is to optimize the decision unit models of the components
according to the objective function, which is a formal description of the desired
goals. This approach may provide the basis for a qualified engineering process
for self-organizing systems in technical applications.

The case-studies investigating the general evolvability of self-organizing
systems in various perspectives are essential contributions of this thesis. In
Chapter 5 we demonstrated the design approach by generating a complex self-
organizing multicellular system based on cellular automata. In the presented
model the cell behavior was controlled by an artificial neural network according
to the cell’s internal state. The idea was to evolve the cell rules in a way that
a previously defined reference pattern emerges solely by the interactions of the
cells. A definite contribution of this work was to present how a morphogenetic
process can be initiated by integrating ANNs into a self-organizing CA model.
We also introduced a quantitative measure for problem complexity based on
spatial entropy in order to assess the difficulty of a particular reference image.
This has been used to investigate the correlation between the performance
of the evolved solutions and the difficulty of the problem. The best results
have been achieved with simple structures consisting of large areas of a single
color as they are present for example in flags. However, the presented setup
could not solve images of high complexity (for example a simplified version of
the Mona Lisa paiting) as the evolutionary process got stuck at a suboptimal
stage. Thus, the results indicate a rapid decrease of fitness values with the
increase of image complexity. Furthermore, our findings also show that this
task can be very difficult even for more complex neural networks. Attempts
using NEAT - an algorithm that optimizes the structure of the neural network
- performed similarly as fixed neural networks with similar number of hidden
neurons.

Two additional studies were presented in the domain of swarm robotics.
The experiments described in Chapter 6 aim at increasing the understanding
the effects of different interaction interfaces used for self-organizing swarms of
robots. We evolved artificial neural network controllers for the robots to exhibit
flocking behavior. The robots had different fixed LED configurations used for
signalling their orientation, in order to test the effect of various setups. In par-
ticular, we compared 2-color front-rear and left-right setups that are seemingly
identical in terms of information content. Yet, the evolved swarm behavior
was qualitatively different, i.e., we obtained different variations of line follow-
ing instead of flocking behavior. Our results indicate that the selection of the
interaction interface can determine the success or the failure of the evolutionary

105



8.1 Contributions 8 Conclusions

experiment. Thus a contribution of this work is to show the importance of the
interface design on the ability to evolve efficient coordinated motion behaviors
in a self-organizing team of robots.

The second case-study on evolutionary swarm robotics is described in Chap-
ter 7, where we studied how a self-organizing system can be evolved that is ex-
posed to a coevolved adversarial environment. In particular, we have described
an experiment where we evolved a competing population of artificial neural
network controllers for a homogeneous team of cooperative robots playing a
simplified version of the RoboCup simulated soccer game. After a few hundred
generations, the players of a team adopt a useful behavior. Unlike in real soc-
cer games with attackers, defenders, and midfielders, in our implementation no
specific roles were assigned a priori, but all robots were controlled by an own
instance of the same neural network controller. Still, during a game, different
behavior of the players emerge based on their situations. Thus, similar to bi-
ological systems, the entities specify to different roles in a self-organizing way.
Since the entities are identical, the system has a high robustness against failure
of some of the entities and a higher degree of scalability is ensured compared to
teams with fixed configuration. We also examined the influence of the design
of the interface between neural network and sensors/actuators. Although an
ANN could theoretically adopt to different representations of sensor/actuator
interfaces, it was necessary to find an interface with low “cognitive complex-
ity” for the ANN, which was in our case a simple Cartesian representation
of the sensors and intended robot movements. Furthermore, we analyzed the
influence of using different sizes and types of fixed-structured ANNs. While
the number of neurons had the smallest effect on the performance, the type of
representation favored the fully-connected network type.

Furthermore, a novel software tool is described that aims to bring all this
knowledge into a modular, easy-to-use software framework especially designed
for evolving and evaluating self-organizing networked systems. With the princi-
ple of reusable, independent components, FREVO allows for easily exchanging
different implementations of evolvable agent controllers, optimization methods
and ranking methods. A simple example can be implemented with a few lines
of code. The implementation effort is thus reduced to defining the context,
the fitness function and define input and output of the agent. After evolving
the agent controllers, the simulations with the resulting candidates can be re-
played either with the same settings or with different parameters for evaluation
purposes.

106



8 Conclusions 8.2 Future Work

8.2 Future Work

There are many directions for future work due to the diverse nature of this
thesis’s content. Regarding the proposed design methodology, an important
challenge is to tackle the integration of the presented approach with a system
engineering approach that yields dependable and trustworthy self-organizing
systems. Furthermore, deeper analysis of the components is necessary that
involves novel algorithms and machine learning techniques. Additionally, the
there is a vast set of meta-heuristic algorithms whose performance can be elab-
orated on self-organizing systems.

The presented findings of the case studies offer also many possibilities for
future work. With respect to Chapter 5, there is a large space of possibilities
for variations of the model which gives rise to future work. E. g., findings on
well-suited or less well-suited model configurations could give insight to the un-
derstanding of such phenomena as morphogenesis and camouflage mechanisms
in nature. Future experiments are planned to study the effects of increasing
or decreasing the ability of ANNs to communicate with their neighbors. For
evolving structures rather than replications of images, a new fitness function
design is planned in a way to have the fitness based on the type of the emerging
structure instead of a pixel-by-pixel comparison. Possible applications of this
research could be the self-organized pattern formation in swarm robotics. In
other words, given a desired pattern, how can robots acquire it? Another appli-
cation could be smart painting (as indicated in [AAC+00]) that would decide
on its color based on a morphogenetic process having only a few distinctive
sensory inputs, thus not allowing for a zygote approach.

Insights presented in Chapter 6 raises the need of well-assessed method-
ologies to guide the experimenter in the choice of the robot configuration. In
this respect, we envisage in future work the usage of automated methodologies.
For instance, the robot configuration could be put under evolutionary pressure
(i.e., as an additional objective in a multi-objective setup). However, suitable
encoding must be devised to ensure the co-evolvability of configuration and
behavior.

Our study on the evolution of self-organizing soccer robots open up interest-
ing questions as well. One would be to investigate the effects of different evo-
lutionary strategies, e.g., coevolutionary algorithms with multiple populations.
Such approaches would allow very different strategies to emerge separately,
thus providing solutions with even higher rates of adaptability. Furthermore,
the flexibility of FREVO allows studies leading in many different directions,
such as studying heterogeneous swarms, different controller types (instead of
neural networks) or the effects of certain fitness functions.

107



8.2 Future Work 8 Conclusions

FREVO is continuously being developed to offer more tools and algo-
rithms for the users. Therefore, a definite future plan is to concentrate
on further integrating different representation models, optimization methods,
such as particle swarm optimization and ranking methods for instances of
AbstractMultiProblems.

108



Bibliography

[AAC+00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T.F.
Knight, R. Nagpal, E. Rauch, G.J. Sussman, and R. Weiss. Amor-
phous Computing. Communications of the ACM, 43(5):74–82,
2000.

[Abe09] T. Abeel. Java machine learning library, 2009.

[Alt94] L. Altenberg. Advances in genetic programming. In Kenneth E.
Kinnear, Jr., editor, The evolution of evolvability in genetic pro-
gramming, chapter 3, pages 47–74. MIT Press, Cambridge, MA,
USA, 1994.

[Art08] S. Arteconi. Evolutionary methods for self-organizing coopera-
tion in peer-to-peer networks. Technical Report UBLCS-2008-5,
Department of Computer Science, University of Bologna, 2008.

[Ash47] W. R. Ashby. Principles of the self-organizing dynamic system.
Journal of General Psychology, 37:125–128, 1947.

[Ash62] W. R. Ashby. Principles of the self-organizing system. In H. v. Fo-
erster and G. W. Zopf, editors, Principles of Self-Organization:
Transactions of the University of Illinois Symposium, pages 255–
278. Pergamon, London, 1962.

[AWdM08] C. Auer, P. Wüchner, and H. de Meer. A method to derive local
interaction strategies for improving cooperation in self-organizing
systems. In K. A. Hummel and J. P.G. Sterbenz, editors, Self-
Organizing Systems, volume 5343 of Lecture Notes in Computer
Science, pages 170–181. Springer Berlin Heidelberg, 2008.

[BBZ05] G. Buason, N. Bergfeldt, and T. Ziemke. Brains, bodies, and be-
yond: Competitive co-evolution of robot controllers, morphologies
and environments. Genetic Programming and Evolvable Machines,
6:25–51, 2005.

109



BIBLIOGRAPHY BIBLIOGRAPHY

[BG97] Z. Boger and H. Guterman. Knowledge extraction from artificial
neural network models. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics 1997, volume 4,
pages 3030–3035 vol.4, 1997.

[BK99] P. Bentley and S. Kumar. Three ways to grow designs: A com-
parison of embryogenies for an evolutionary design problem. In In
Proceedings of the Genetic and Evolutionary Computation Con-
ference, pages 35–43. Morgan Kaufmann, 1999.

[BK11] U. Boryczka and J. Kozak. New insights of cooperation among
ants in ant colony decision trees. In Nature and Biologically In-
spired Computing (NaBIC), 2011 Third World Congress on, pages
255 –260, oct. 2011.

[BL04] M.J. Berry and G.S. Linoff. Data Mining Techniques: For Market-
ing, Sales, and Customer Relationship Management. Wiley tech-
nology publication. Wiley, 2004.

[BLM+10] M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier,
G. Roulet, F. Vaussard, H. Bleuler, and F. Mondada. The
marXbot, a miniature mobile robot opening new perspectives
for the collective-robotic research. In Processings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4187–4193, 2010.

[Blu92] A. Blum. Neural Networks in C++: An Object-Oriented Frame-
work for Building Connectionist Systems. Number v. 1 in Wiley
professional computing. John Wiley & Sons, 1992.

[BMA06] M. Batouche, S. Meshoul, and A. Abbassene. On solving edge
detection by emergence. In Moonis Ali and Richard Dapoigny,
editors, Advances in Applied Artificial Intelligence, volume 4031
of Lecture Notes in Computer Science, pages 800–808. Springer
Berlin Heidelberg, 2006.

[BMSG+09] Y. Brun, G. M. Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Mller, M. Pezz, and M. Shaw. Engineering self-
adaptive systems through feedback loops. In Betty H.C. Cheng,
R. Lemos, H. Giese, P. Inverardi, and J. Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of Lecture
Notes in Computer Science, pages 48–70. Springer Berlin Heidel-
berg, 2009.

110



BIBLIOGRAPHY BIBLIOGRAPHY

[BNE07] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multi-
objective selection based on dominated hypervolume. European
Journal of Operational Research, 181(3):1653–1669, 2007.

[BP07] S. Bergbreiter and K. S. J. Pister. Design of an autonomous jump-
ing microrobot. In IEEE International Conference on Robotics
and Automation, Rome, Italy, 2007.

[BR00] S. Buck and M. A. Riedmiller. Learning situation dependent suc-
cess rates of actions in a robocup scenario. In PRICAI, page 809,
2000.

[BR01] F. Bellifemine and G. Rimassa. Developing multi-agent systems
with a fipa-compliant agent framework. Software Practice and
Experience, 31(2):103–128, February 2001.

[BS08] J. Branke and H. Schmeck. Evolutionary design of emergent be-
havior. In Organic Computing, Understanding Complex Systems,
pages 123–140. Springer Berlin Heidelberg, 2008.

[Buc88] J. Buck. Synchronous Rhythmic Flashing of Fireflies. II. The
Quarterly Review of Biology, 63(3):265–289, 1988.

[BY99] Y. Bar-Yam. Dynamics of Complex Systems. Perseus Books, 1999.

[CB92] M. Caudill and C. Butler. Understanding Neural Networks; Com-
puter Explorations. MIT Press, Cambridge, MA, USA, 1992.

[CCG+10] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati,
F. Stefanini, and M. Viale. Scale-free correlations in starling flocks.
Proceedings of the National Academy of Sciences, 107(26):11865,
2010.

[CD06] A. Chavoya and Y. Duthen. Using a genetic algorithm to evolve
cellular automata for 2d/3d computational development. In
GECCO ’06: Proceedings of the 8th annual conference on Ge-
netic and evolutionary computation, pages 231–232, New York,
NY, USA, 2006. ACM.

[CD07] A. Chavoya and Y. Duthen. Use of a genetic algorithm to evolve
an extended artificial regulatory network for cell pattern genera-
tion. In GECCO ’07: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, pages 1062–1062, New
York, NY, USA, 2007. ACM.

111



BIBLIOGRAPHY BIBLIOGRAPHY

[CFS+01] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L.
Deneubourg, and G. Theraula. Self-Organization in Biological
Systems. Princeton University Press, Princeton, NJ, USA, 2001.

[Cho01] H. Choset. Coverage for robotics a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31(1-4):113–126, 2001.

[CKJ+02] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N.R. Franks.
Collective memory and spatial sorting in animal groups. Journal
of Theoretical Biology, 218(1):1–11, 2002.

[CLG+09] B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. An-
dersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo S.,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-
sai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns,
and J. Whittle. Software engineering for self-adaptive systems.
chapter Software Engineering for Self-Adaptive Systems: A Re-
search Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg,
2009.

[CLNR12] C. Costanzo, V. Loscri, E. Natalizio, and T. Razafindralambo.
Nodes self-deployment for coverage maximization in mobile robot
networks using an evolving neural network. Computer Communi-
cations, 35(9):1047–1055, 2012.

[COD09] A.L. Christensen, R. O’Grady, and M. Dorigo. From fireflies to
fault-tolerant swarms of robots. IEEE Transactions on Evolution-
ary Computation, 13(4):754–766, 2009.

[Cor04] IBM Corp. An architectural blueprint for autonomic computing.
IBM Corp., USA, October 2004.

[Cra85] N. L. Cramer. A representation for the adaptive generation of
simple sequential programs. In Proceedings of the 1st International
Conference on Genetic Algorithms, pages 183–187, Hillsdale, NJ,
USA, 1985. L. Erlbaum Associates Inc.

[CT06] T. M. Cover and J. A. Thomas. Elements of Information The-
ory (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, 2006.

[Dar59] C. Darwin. On the Origin of the Species by Means of Natural
Selection: Or, The Preservation of Favoured Races in the Struggle
for Life. John Murray, 1859.

112



BIBLIOGRAPHY BIBLIOGRAPHY

[DCD98] G. Di Caro and M. Dorigo. Antnet: distributed stigmergetic con-
trol for communications networks. J. Artif. Int. Res., 9(1):317–
365, December 1998.

[Des37] R. Descartes. Discourse on method, 1637.

[dFFH01] Viviane Grunert da Fonseca, Carlos M. Fonseca, and Andreia O.
Hall. Inferential performance assessment of stochastic optimis-
ers and the attainment function. In Lecture Notes in Computer
Science, pages 213–225. Springer, 2001.

[DG89] K. Deb and D. E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In Proceedings of the
3rd International Conference on Genetic Algorithms, pages 42–50,
San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[dGTH+08] Hugo de Garis, Jian Yu Tang, Zhiyong Huang, Lu Bai, Cong Chen,
Shuo Chen, Junfei Guo, Xianjin Tan, Hao Tian, Xiaohan Tian,
Xianjian Wu, Ye Xiong, Xiangqian Yu, and Di Huang. The china-
brain project: Building china’s artificial brain using an evolved
neural net module approach. In Proceeding of the 2008 Confer-
ence on Artificial General Intelligence 2008, pages 107–121, Am-
sterdam, The Netherlands, 2008. IOS Press.

[Dic05] G. Dick. A comparison of localised and global niching methods.
In 17th Annual Colloquium of the Sparial Information Research
Centre (SIRC 2005: A Spatio-temporal Workshop), pages 91–101.
Dunedin, New Zealand, 2005.

[DMC96] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimiza-
tion by a colony of cooperating agents. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on, 26(1):29–41,
1996.

[dNMB02] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory Social Net-
work Analysis with Pajek. Cambridge University Press, 2002.

[EB04] B. Edmonds and J. J. Bryson. The insufficiency of formal de-
sign methods - the necessity of an experimental approach for the
understanding and control of complex MAS. In Proceedings of
the Third International Joint Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’04, pages 938–945,
Washington, DC, USA, 2004. IEEE Computer Society.

113



BIBLIOGRAPHY BIBLIOGRAPHY

[EdM08] W. Elmenreich and H. de Meer. Self-organizing networked systems
for technical applications: A discussion on open issues. In K. A.
Hummel and J. P. G. Sterbenz, editors, Self-Organizing Systems,
volume 5343 of Lecture Notes in Computer Science, pages 1–9.
Springer Berlin Heidelberg, 2008.

[EEK93] G.B. Ermentrout and L. Edelstein-Keshet. Cellular automata ap-
proaches to biological modeling. Journal of Theoretical Biology,
160(1):97 – 133, 1993.

[EF11] W. Elmenreich and I. Fehérvári. Evolving self-organizing cellu-
lar automata based on neural network genotypes. In Proceedings
of the Fifth International Workshop on Self-Organizing Systems,
volume LNCS 6557, pages 16–25. Springer Verlag, 2011.

[EIF09] W. Elmenreich, T. Ibounig, and I. Fehérvári. Robustness versus
performance in sorting and tournament algorithms. Acta Polytec-
nica, 6(5):7–18, 2009.

[EK07] W. Elmenreich and G. Klingler. Genetic evolution of a neural
network for the autonomous control of a four-wheeled robot. In
Sixth Mexican International Conference on Artificial Intelligence
(MICAI’07), Aguascalientes, Mexico, nov 2007.

[Elm07] W. Elmenreich. A review on system architectures for sensor fusion
applications. In The 5th IFIP Workshop on Software Technologies
for Future Embedded & Ubiquitous Systems, 2007.

[ES77] M. Eigen and P. Schuster. A principle of natural self-organization.
Naturwissenschaften, 64(11):541–565, 1977.

[ES03] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer-Verlag Berlin, 2003.

[FaHY04] Wei F., Yi an H., and P. S. Yu. Decision tree evolution using
limited number of labeled data items from drifting data streams.
In Fourth IEEE International Conference on Data Mining, 2004.
ICDM ’04., pages 379–382, 2004.

[FC54] B. Farley and W. Clark. Simulation of self-organizing systems by
digital computer. Information Theory, IRE Professional Group
on, 4(4):76 –84, September 1954.

[FDM08] D. Floreano, P. Drr, and C. Mattiussi. Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1):47–62,
2008.

114



BIBLIOGRAPHY BIBLIOGRAPHY

[FE09a] I. Fehérvári and W. Elmenreich. Evolutionary methods in self-
organizing system design. In Proceedings of the 2009 International
Conference on Genetic and Evolutionary Methods, pages 10–15,
2009.

[FE09b] I. Fehérvári and W. Elmenreich. Towards evolving cooperative
behavior with neural controllers. In IFIP Fourth International
Workshop on Self-Organizing Systems, 2009.

[FE10] I. Fehérvári and W. Elmenreich. Evolving neural network con-
trollers for a team of self-organizing robots. Journal of Robotics,
2010.

[FE13] I. Fehérvári and W. Elmenreich. Evolution as a tool to design
self-organizing systems. In IFIP 7th International Workshop on
Self-Organizing Systems, 2013.

[fid88] FIDE Swiss Rules: Instruction Manual. Federation Internationale
des Echecs, 1988.

[FK10a] D. Floreano and L. Keller. Evolution of adaptive behaviour in
robots by means of Darwinian selection. PLoS biology, 8(1), Jan-
uary 2010.

[FK10b] D. Floreano and L. Keller. Evolution of adaptive behaviour
in robots by means of darwinian selection. Plos Biology,
8(1):e1000292, 2010.

[FN00] D. Floreano and S. Nolfi. The role of self-organization for the
synthesis and the understanding of behavioral systems, chapter 1,
pages 1–18. MIT Press: Cambridge, 2000.

[Fon08] A. Fontana. Epigenetic tracking, a method to generate arbitrary
shapes by using evolutionary-developmental techniques. May
2008.

[Fon09] A. Fontana. Epigenetic tracking: A possible solution for evo-devo
morphogenesis? In Proceedings of the 1st International Workshop
on Morphogenetic Engineering, 2009.

[FOW66] Michael J. Fogel, Lawrence J. Owens, and Alvin J. Walsh. Artifi-
cial Intelligence through Simulated Evolution. Wiley, Chichester,
WS, UK, 1966.

115



BIBLIOGRAPHY BIBLIOGRAPHY

[FTE13] I. Fehérvári, V. Trianni, and W. Elmenreich. On the effects of the
robot configuration on evolving coordinated motion behaviors. In
2013 IEEE Congress on Evolutionary Computation (CEC), pages
1209–1216, 2013.

[FU00] D. Floreano and J. Urzelai. Evolutionary robots with on-line self-
organization and behavioral fitness. Neural Networks, 13(45):431
– 443, 2000.

[GA05] C. Gershenson and CL. Apostel. Self-organizing traffic lights.
Complex Systems, 2005.

[Gar70] M. Gardner. The fantastic combinations of John Conway’s new
solitaire game “life”. Scientific American, 223:120–123, October
1970.

[Gau04] S. Gaukroger. Descartes, an Intellectual Biography. Oxford Uni-
versity Press, 2004.

[GCGC08] M.-P. Gleizes, V. Camps, J.-P. Georg, and D. Capera. En-
gineering systems which generate emergent functionalities. In
D. Weyns, S. A. Brueckner, and Y. Demazeau, editors, Engineer-
ing Environment-Mediated Multi-Agent Systems, volume 5049 of
Lecture Notes in Computer Science, pages 58–75. Springer Berlin
Heidelberg, 2008.

[Ger07] C. Gershenson. Design and Control of Self-organizing Systems.
PhD thesis, Vrije Universiteit Brussel, 2007.

[GH03] C. Gershenson and F. Heylighen. When can we call a system self-
organizing? In W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich,
and J. T. Kim, editors, Advances in Artificial Life, volume 2801
of Lecture Notes in Computer Science, pages 606–614. Springer
Berlin Heidelberg, 2003.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1989.

[GR87] D. E. Goldberg and J. Richardson. Genetic algorithms with shar-
ing for multimodal function optimization. In Proceedings of the
Second International Conference on Genetic Algorithms on Ge-
netic algorithms and their application, pages 41–49, Hillsdale, NJ,
USA, 1987. L. Erlbaum Associates Inc.

116



BIBLIOGRAPHY BIBLIOGRAPHY

[Gre12] G. Greenfield. A platform for evolving controllers for simulated
drawing robots. In Evolutionary and Biologically Inspired Music,
Sound, Art and Design, volume 7247 of Lecture Notes in Computer
Science, pages 108–116. Springer Berlin Heidelberg, 2012.

[GYWA05] J.M.E. Gabbai, Hujun Yin, W. A. Wright, and N.M. Allinson.
Self-organization, emergence and multi-agent systems. In Inter-
national Conference on Neural Networks and Brain, 2005. ICNN
B ’05., volume 3, pages nil24–1863, 2005.

[Hak78] H. Haken. Synergetics: An Introduction. Nonequilibrium Phase
Transitions and Self- Organization in Physics, Chemistry and Bi-
ology (Springer Series in Synergetics). Springer, November 1978.

[HdMB08] R. Holzer, H. de Meer, and C. Bettstetter. On autonomy and
emergence in self-organizing systems. In Proceedings of the 3rd
International Workshop on Self-Organizing Systems, IWSOS ’08,
pages 157–169, Berlin, Heidelberg, 2008. Springer-Verlag.

[HDT02] A.T Hayes and P Dormiani-Tabatabaei. Self-organized flocking
with agent failure: Off-line optimization and demonstration with
real robots. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA ’02), pages 3900–3905 vol.4.
IEEE, 2002.

[HDW+13] I. Harvey, E. Di Paolo, R. Wood, M. Quinn, and E. Tuci. Evo-
lutionary robotics: A new scientific tool for studying cognition.
Artificial Life, 11(1-2):79–98, 2013.

[HL73] G. T. Herman and W. H. Liu. The daughter of celia, the french
flag and the firing squad. In WSC ’73: Proceedings of the 6th
conference on Winter simulation, page 870, New York, NY, USA,
1973. ACM.

[HLV+11] S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J.C. Zuf-
ferey, and D Floreano. Reynolds flocking in reality with fixed-
wing robots: Communication range vs. maximum turning rate.
In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5015–5020. IEEE, 2011.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. Uni-
versity of Michigan Press, Ann Arbor, MI, USA, 1975.

[HW92a] D. Hooper and K. Whyld. The Oxford companion to chess. Oxford
University Press, 1992.

117



BIBLIOGRAPHY BIBLIOGRAPHY

[HW92b] A. Huth and C. Wissel. The simulation of the movement of fish
schools. Journal of Theoretical Biology, 156(3):365–385, 1992.

[IGHM08] C Igel, T. Glasmachers, and V. Heidrich-Meisner. Shark. Journal
of Machine Learning Research, 9:993–996, 2008.

[JB05] Yaochu J. and J. Branke. Evolutionary optimization in uncer-
tain environments-a survey. IEEE Transactions on Evolutionary
Computation, 9(3):303–317, 2005.

[JLM03] A. Jadbabaie, Jie Lin, and A. S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, June 2003.

[JM91] C. Z. Janikow and Z. Michalewicz. An Experimental Comparison
of Binary and Floating Point Representations in Genetic Algo-
rithms. In R. K. Belew and L. B. Booker, editors, Proc. of the 4th
International Conference on Genetic Algorithms, pages 151–157.
Morgan Kaufmann, 1991.

[Joh02] S. Johnson. Emergence: The Connected Lives of Ants, Brains,
Cities, and Software. Scribner, 2002.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proceedings of the IEEE International Conference on Neural Net-
works, 1995, volume 4, pages 1942–1948 vol.4, 1995.

[Kel96] K. Keller. Socio-technical systems and self-organization. SIGOIS
Bull., 17(1):6–7, April 1996.

[Kol63] A. N. Kolmogorov. On tables of random numbers. Sankhyā: The
Indian Journal of Statistics, Series A (1961-2002), 25(4):pp. 369–
376, 1963.

[Koz92] J. R. Koza. Genetic programming: on the programming of com-
puters by means of natural selection. MIT Press, Cambridge, MA,
USA, 1992.

[Kum03] J. Kummeneje. RoboCup as a Measure to Research, Education,
and Dissemination. PhD thesis, Stockholm University and the
Royal Institute of Technology, Kista, Sweden, 2003.

[LCRP+05] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan.
Mason: A multiagent simulation environment. Simulation,
81(7):517–527, July 2005.

118



BIBLIOGRAPHY BIBLIOGRAPHY

[LE09] R. Leidenfrost and W. Elmenreich. Firefly clock synchronization
in an 802.15.4 wireless network. EURASIP Journal on Embedded
Systems, pages 1–17, 2009.

[Leh90] J.-M. Lehn. Perspectives in supramolecular chemistryfrom molec-
ular recognition towards molecular information processing and
self-organization. Angewandte Chemie International Edition in
English, 29(11):1304–1319, 1990.

[LH05] T. Larsen and S.T. Hansen. Evolving composite robot behaviour
- a modular architecture. In Proceedings of the Fifth Interna-
tional Workshop on Robot Motion and Control, 2005. RoMoCo
’05, pages 271 – 276, june 2005.

[LIPS10] M. López-Ibáñez, L. Paquete, and T. Stützle. Exploratory analysis
of stochastic local search algorithms in biobjective optimization.
In Thomas Bartz-Beielstein, Marco Chiarandini, Lúıs Paquete,
and Mike Preuss, editors, Experimental Methods for the Analy-
sis of Optimization Algorithms, pages 209–222. Springer, Berlin,
Germany, 2010.

[LP00] H. Lipson and J.B. Pollack. Automatic design and manufacture
of robotic lifeforms. Nature, 406(6799):974–978, 2000.

[LS11] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation,
19(2):189–223, June 2011.

[Mah95] S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD
thesis, University of Illinois at Urbana-Champaign, 1995.

[Mea55] G. H. Mealy. A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal, 34(5):1045–1079, 1955.

[Mef12] K. Meffert. JGAP - Java genetic algorithms and genetic program-
ming package, 2012.

[Mil04] J. F. Miller. Evolving a self-repairing, self-regulating, french flag
organism. In Proceedings of Genetic and Evolutionary Computa-
tion Conference (GECCO 2004), pages 129–139, 2004.

[MN09] C.M. Macal and M.J. North. Agent-based modeling and simula-
tion. In Proceedings of the 2009 Winter Simulation Conference
(WSC), pages 86–98, 2009.

119



BIBLIOGRAPHY BIBLIOGRAPHY

[MO08] L. Marsh and C. Onof. Stigmergic epistemology, stigmergic cog-
nition. Cognitive Systems Research, 9(1-2):136–149, March 2008.

[MS90] R. Mirollo and S. Strogatz. Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics,
50(6):1645–1662, 1990.

[MS04] C. Muller-Schloer. Organic computing - on the feasibility of con-
trolled emergence. In Proceedings of the International Confer-
ence on Hardware/Software Codesign and System Synthesis, 2004.
CODES + ISSS 2004., pages 2–5, 2004.

[MSC10] C. Moeslinger, T. Schmickl, and K. Crailsheim. Emergent flocking
with low-end swarm robots. In M. et al. Dorigo, editor, ANTS’10:
Proceedings of the 7th international conference on Swarm intelli-
gence, volume 6234 of Lecture Notes in Computer Science, pages
424–431. Springer, 2010.

[NBD09] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions
in evolutionary robotics: A survey and analysis. Robotics and
Autonomous Systems, 57(4):345–370, April 2009.

[NF98] S. Nolfi and D. Floreano. Coevolving predator and prey robots:
Do ”arms races” arise in artificial evolution? Artif. Life, 4(4):311–
335, October 1998.

[NF00] S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT
Press/Bradford Books, Cambridge, MA, 2000.

[NGH04] A.L. Nelson, E. Grant, and T.C. Henderson. Evolution of neu-
ral controllers for competitive game playing with teams of mobile
robots. Robotics and Autonomous Systems, 46(3):135 – 150, 2004.

[Nov03] G. Novak. Roboter soccer: An example for autonomous mobile co-
operating robots. In Proceedings of the First Workshop on Intelli-
gent Solutions for Embedded Systems (WISES’03), pages 107–118,
Vienna, Austria, 2003.

[NP77] G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium
Systems. Wiley, New York, May 1977.

[Ort94] P.J. Ortoleva. Geochemical self-organization. Oxford monographs
on geology and geophysics. Oxford University Press, 1994.

120



BIBLIOGRAPHY BIBLIOGRAPHY

[Pag89] H. R. Pagels. The Dreams of Reason: The Computer and the Rise
of the Sciences of Complexity. Bantam, June 1989.

[PB05] C. Prehofer and C. Bettstetter. Self-organization in communica-
tion networks: principles and design paradigms. Communications
Magazine, IEEE, 43(7):78–85, 2005.

[PB07] R. Pfeifer and J. Bongard. How the body shapes the way we think:
a new view of intelligence. MIT Press/Bradford Books, Cam-
bridge, MA, 2007.

[PBSE12] Á. Pintér-Bartha, A. Sobe, and W. Elmenreich. Towards the light
– Comparing evolved neural network controllers and finite state
machine controllers. In Proceedings of the Tenth International
Workshop on Intelligent Solutions in Embedded Systems, pages
83–87, Klagenfurt, Austria, jul 2012.

[Pet96] A. Petrowski. A clearing procedure as a niching method for genetic
algorithms. In Proceedings of the IEEE International Conference
on Evolutionary Computation, 1996, pages 798–803, 1996.

[Pet02] P Peti. The concepts behind time, state, component, and inter-
face - a literature survey. Research Report 53/2002, Technische
Universität Wien, Institut für Technische Informatik, Treitlstr. 1-
3/182-1, 1040 Vienna, Austria, 2002.

[PK00] A. Papagelis and D. Kalles. GA tree: genetically evolved decision
trees. In Proceedings of the 12th IEEE International Conference
on Tools with Artificial Intelligence, 2000. ICTAI 2000, pages 203
–206, 2000.

[PRT+08] H. Prothmann, F. Rochner, S. Tomforde, J. Branke, C. Müller-
Schloer, and H. Schmeck. Organic control of traffic lights. In
C. Rong, M. Jaatun, F. Sandnes, L.T. Yang, and J. Ma, editors,
Autonomic and Trusted Computing, volume 5060 of Lecture Notes
in Computer Science, pages 219–233. Springer Berlin Heidelberg,
2008.

[PTO+12] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy,
M. Brambilla, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle,
M. Birattari, L. M. Gambardella, and M. Dorigo. ARGoS: A
modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intelligence, 6(4):271–295, 2012.

121



BIBLIOGRAPHY BIBLIOGRAPHY

[QSMH02] M. Quinn, L. Smith, G. Mayley, and P. Husb. Evolving teamwork
and role allocation with real robots. In Proceedings of the 8th
International Conference on Artificial Life, pages 302–311. MIT
Press, 2002.

[Rec94] I. Rechenberg. Evolutionsstrategie ’94. Frommann-Holzboog,
Stuttgart, 1994.

[Res97] M. Resnick. Turtles, Termites, and Traffic Jams: Explorations in
Massively Parallel Microworlds (Complex Adaptive Systems). The
MIT Press, 1997.

[Rey87] C. W. Reynolds. Flocks, herds and schools: A distributed be-
havioral model. In Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’87,
pages 25–34, New York, NY, USA, 1987. ACM.

[RMB+06] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and
H. Schmeck. Towards a generic observer/controller architecture
for organic computing. In Christian Hochberger and Rüdiger
Liskowsky, editors, INFORMATIK 2006? Informatik für Men-
schen!, volume P-93 of LNI, pages 112–119. Bonner Köllen Verlag,
Oktober 2006.

[RPS12] W. Renz, T. Preisler, and J. Sudeikat. Mesoscopic stochastic mod-
els for validating self-organizing multi-agent systems. In Proceed-
ings of the 1st International Workshop on Evaluation for Self-
Adaptive and Self-Organizing Systems, Lyon, France, September
2012.

[RSZF07] J. Roberts, T. Stirling, J. Zufferey, and D. Floreano. Quadrotor
using minimal sensing for autonomous indoor flight. In European
Micro Air Vehicle Conference and Flight Competition (EMAV’07),
2007.

[RW08] B. Rinner and W. Wolf. An introduction to distributed smart
cameras. Proceedings of the IEEE, 96(10):1565–1575, 2008.

[SB08] E. Sapin and L. Bull. Searching for glider guns in cellular au-
tomata: Exploring evolutionary and other techniques. In N. Mon-
march, E.-G. Talbi, P. Collet, M. Schoenauer, and E. Lutton, ed-
itors, Artificial Evolution, volume 4926 of Lecture Notes in Com-
puter Science, pages 255–265. Springer Berlin Heidelberg, 2008.

122



BIBLIOGRAPHY BIBLIOGRAPHY

[SBP+09] J. Sudeikat, L. Braubach, A. Pokahr, W. Renz, and W. Lamers-
dorf. Systematically engineering self-organizing systems: The
sodekovs approach. ECEASST, 17:1–12, 2009.

[SBW+10] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber. PyBrain. Journal of Machine
Learning Research, 11:743–746, 2010.

[SFE12] A. Sobe, I. Fehérvári, and W. Elmenreich. FREVO: A tool for
evolving and evaluating self-organizing systems. In Proceedings
of the Sixth IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), 2012, pages 105–
110, 2012.

[SG10] W. M. Spears and D. F. Gordon. Evolving finite-state machine
strategies for protecting resources. In Foundations of Intelli-
gent Systems, volume 1932 of Lecture Notes in Computer Science,
pages 166–175. Springer Berlin Heidelberg, 2010.

[Sha48] C. E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[SM02] K. O. Stanley and R. Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary Computation,
10(2):99–127, 2002.

[SMS05] T. Schöler and C. Müller-Schloer. An observer/controller archi-
tecture for adaptive reconfigurable stacks. In Michael Beigl and
Paul Lukowicz, editors, Systems Aspects in Organic and Pervasive
Computing - ARCS 2005, volume 3432 of Lecture Notes in Com-
puter Science, pages 139–153. Springer Berlin Heidelberg, 2005.

[SP97] R. Storn and K. Price. Differential evolution a simple and efficient
heuristic for global optimization over continuous spaces. Journal
of Global Optimization, 11(4):341–359, 1997.

[SR08] J. Sudeikat and W. Renz. Toward systemic MAS development:
Enforcing decentralized selforganization by composition and re-
finement of archetype dynamics. In D. Weyns, S. A. Brueckner,
and Y. Demazeau, editors, Engineering Environment-Mediated
Multi-Agent Systems, volume 5049 of Lecture Notes in Computer
Science, pages 39–57. Springer Berlin Heidelberg, 2008.

[SS01] U. Schmid and K. Schossmaier. How to reconcile fault-tolerant in-
terval intersection with the lipschitz condition. Distributed Com-
puting, 14(2):101–111, 2001.

123



BIBLIOGRAPHY BIBLIOGRAPHY

[Sta08] K. Stanley. Novelty search C++ - implemented as an extension
to ken stanley’s rtNEAT implementation., 2008.

[SVML03] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-
based optimization of communication protocols for large-scale
wireless sensor networks. In Aerospace Conference, 2003. Pro-
ceedings. 2003 IEEE, volume 3, pages 1339–1346, 2003.

[Swi96] K. Swingler. Applying Neural Networks: A Practical Guide. Aca-
demic Press, 1996.

[Sym08] J. Symons. Computational models of emergent properties. Minds
and Machines, 18(4):475–491, 2008.

[TAB07] A. Tyrrell, G. Auer, and C. Bettstetter. Biologically inspired syn-
chronization for wireless networks. In F. Dressler and I. Carreras,
editors, Advances in Biologically Inspired Information Systems,
volume 69 of Studies in Computational Intelligence, pages 47–62.
Springer Berlin Heidelberg, 2007.

[TcGc08] A. E. Turgut, H. Çelikkanat, F. Gökçe, and E. Şahin. Self-
organized flocking in mobile robot swarms. Swarm Intelligence,
2(2-4):97–120, 2008.

[TN11] V. Trianni and S. Nolfi. Engineering the evolution of self-
organizing behaviors in swarm robotics: A case study. Artif. Life,
17(3):183–202, August 2011.

[TR02] D. L. Turcotte and J. B. Rundle. Self-organized complexity in
the physical, biological, and social sciences. Proceedings of the
National Academy of Sciences of the United States of America,
99(Suppl 1):2463–2465, 2002.

[Tri08] V. Trianni. Evolutionary Swarm Robotics - Evolving Self-
Organising Behaviours in Groups of Autonomous Robots, volume
108 of Studies in Computational Intelligence. Springer, 2008.

[TSHMS09] S. Tomforde, M. Steffen, J. Hähner, and C. Müller-Schloer. To-
wards an organic network control system. In Juan Gonzlez Nieto,
Wolfgang Reif, Guojun Wang, and Jadwiga Indulska, editors, Au-
tonomic and Trusted Computing, volume 5586 of Lecture Notes in
Computer Science, pages 2–16. Springer Berlin Heidelberg, 2009.

[Tur52] A. Turing. The chemical basis of morphogenesis. Philosophical
Transactions of the Royal Society B, 237:37–72, 1952.

124



BIBLIOGRAPHY BIBLIOGRAPHY

[UFK97] Y. Uny Cao, A. S. Fukunaga, and A. B. Khang. Cooperative
mobile robots: Antecedents and directions. Autonomous Robots,
4:1–23, 1997.

[Ves12] A. Vespignani. Modelling dynamical processes in complex socio-
technical systems. Nature Physics, 8:3239, 2012.

[vF60] H. von Foerster. On self-organizing systems and their environ-
ments. Self-Organizing Systems, pages 31–50, 1960.

[VZ12] T. Vicsek and A. Zafeiris. Collective motion. Physics Reports,
2012.

[WATP+05] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal.
Firefly-inspired sensor network synchronicity with realistic radio
effects. In Proceedings of The Third International Conference on
Embedded Networked Sensor Systems, pages 142–153, 2005.

[Wei10] E. W. Weisstein. Elementary cellular automaton. MathWorld
- A Wolfram Web Resource: http://mathworld.wolfram.com/

ElementaryCellularAutomaton.html, January 2010.

[WH07] T. Wolf and T. Holvoet. Design patterns for decentralised coor-
dination in self-organising emergent systems. In S.A. Brueckner,
S. Hassas, M. Jelasity, and D. Yamins, editors, Engineering Self-
Organising Systems, volume 4335 of Lecture Notes in Computer
Science, pages 28–49. Springer Berlin Heidelberg, 2007.

[Win84] A. T. Winfree. The prehistory of the Belousov-Zhabotinsky oscil-
lator. Journal of Chemical Education, 61(8):661, 1984.

[WKF+10] D. Wang, N.-M. Kwok, G. Fang, Xiuping Jia, and F. Li. Ants
based control of swarm robots for bushfire fighting. In Proceed-
ings of the International Conference on Artificial Intelligence and
Computational Intelligence (AICI), 2010, volume 1, pages 528–
532, 2010.

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. Evolutionary Computation, IEEE Transactions on,
1(1):67–82, 1997.

[Wol69] L. Wolpert. Positional information and the spatial pattern of cel-
lular differentiation. Journal of Theoretical Biology, 25:1–47, 1969.

125



BIBLIOGRAPHY BIBLIOGRAPHY

[WT11] J. L. Wilkerson and D. R. Tauritz. A guide for fitness function de-
sign. In Natalio Krasnogor and Pier Luca Lanzi, editors, GECCO
(Companion), pages 123–124. ACM, 2011.

[Yan08] X.-S. Yang. Nature-Inspired Metaheuristic Algorithms. Luniver
Press, 2008.

[YD09] X.-S. Yang and S. Deb. Cuckoo search via lvy flights. In World
Congress on Nature & Biologically Inspired Computing, NaBIC
2009, 9-11 December 2009, Coimbatore, India, pages 210–214.
IEEE, 2009.

[YW13] Honghai Y. and S. Winkler. Image complexity and spatial in-
formation. In Quality of Multimedia Experience (QoMEX), 2013
Fifth International Workshop on, pages 12–17, 2013.

[ZTL+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G.
da Fonseca. Performance assessment of multiobjective optimiz-
ers: An analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, April 2003.

126



List of Own Publications

Journal Publications

1. I. Fehérvári and W. Elmenreich. Evolving neural network controllers for
a team of self-organizing robots. Journal of Robotics, 2010.

2. W. Elmenreich, T. Ibounig, and I. Fehérvári. Robustness versus perfor-
mance in sorting and tournament algorithms. Acta Polytechnica Hungar-
ica, 6(5):7, 2009.

Conference Publications

3. I. Fehérvári, V. Trianni and W. Elmenreich: On the Effects of the Robot
Configuration on Evolving Coordinated Motion Behaviors. In Proceed-
ings of the IEEE Congress of Evolutionary Computation 2013 (CEC’13),
Cancun, Mexico, Jun 20-23, 2013

4. I. Fehérvári, A. Sobe and W. Elmenreich: Biologically Sound Neural Net-
works for Embedded Systems Using OpenCL. In Proceedings of the In-
ternational Conference on Networked Systems (NETYS’13), Marrakech,
Morocco, May 2-4, 2013

5. I. Fehérvári, W. Elmenreich: Evolution as a tool to design self-organizing
systems. In Proceedings of the 7th International Workshop on Self-
Organizing Systems (IWSOS’13), Palma de Mallorca, Spain, 9-10th of
May 2013

6. A. Sobe, I. Fehérvári and W. Elmenreich. FREVO: A tool for evolv-
ing and evaluating self-organizing systems. In Proceedings of the IEEE
Self-adaptive and Self-organizing Systems Workshop Eval4SASO, Lyon,
France, September 2012

7. I. Fehérvári, W. Elmenreich, and E. Yanmaz. Evolving a team of self-
organizing UAVs to address spatial coverage problems. In R. M. Bichler,

127



BIBLIOGRAPHY BIBLIOGRAPHY

S. Blachfellner, and W. Hofkirchner, editors, European Meeting on Cyber-
netics and Systems Research Book of Abstracts, pages 201-204, Vienna,
Austria, April 2012

8. B. Lénárt, I. Fehérvári: Using an Adaptive Neuro-Fuzzy Inference Sys-
tem for Adaptive Inventory Control. In Proceedings of the International
Conference on Innovative Technologies (IN-TECH), 2011

9. W. Elmenreich, I. Fehérvári: Evolving self-organizing cellular automata
based on neural network genotypes. In Proceedings of the Fifth Interna-
tional Workshop on Self-Organizing Systems, volume LNCS 6557, pages
16. Springer Verlag, 2011

10. I. Fehérvári, W. Elmenreich: Evolutionary Methods in Self-organizing
System Design in Proceedings of the 2009 International Conference on
Genetic and Evolutionary Methods (GEM’09), part of World Congress
in Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP’09), Las Vegas, NV, USA

11. I. Fehérvári, W. Elmenreich, Towards Evolving Cooperative Behavior
With Neural Controllers, in: IFIP Fourth International Workshop on
Self-Organizing Systems, 2009

12. I. Fehérvári, W. Elmenreich: Design of Self-organizing Systems Using
Evolutionary Methods. In: H. Kaiser, R. Kirner (Hrsg.): Proceedings
of the Junior Scientist Conference 2008. Wien: Technische Universität
Wien, 2008, pp. 53-54.

Poster Publications

13. W. Masood, J. Klinglmayr, I. Fehérvári, T. Watzl and Christian Bettstet-
ter: Synchronization using Inhibitory and Excitatory Coupling: From
Theory to Practice at The 32nd IEEE International Conference on Com-
puter Communications (INFOCOM2013), Turin, Italy, 2013

14. O. Maurhart, W. Elmenreich, I. Fehérvári and A. Bouchachia: Evalua-
tion of Robustness and Performance of Environmental Influences on Evo-
lutionary Algorithms compared to Ant Colony Systems, at the European
Conference on Complex Systems (ECCS’11), Vienna, Austria, 2011

15. I. Fehérvári, W. Elmenreich, O. Maurhart: FREVO: Framework for Evo-
lutionary Design, at the Fifth Internation Workshop on Self-Organizing
Systems (IWSOS’11), Karlsruhe, Germany, 2011

128


